Purpose
To compute a unitary matrix Q and a unitary symplectic matrix U for a complex regular 2-by-2 skew-Hamiltonian/Hamiltonian pencil aS - bH with S = J Z' J' Z, where ( Z11 Z12 ) ( H11 H12 ) Z = ( ) and H = ( ), ( 0 Z22 ) ( 0 -H11' ) such that U' Z Q, (J Q J' )' H Q are both upper triangular, but the eigenvalues of (J Q J')' ( aS - bH ) Q are in reversed order. The matrices Q and U are represented by ( CO1 SI1 ) ( CO2 SI2 ) Q = ( ) and U = ( ), respectively. ( -SI1' CO1 ) ( -SI2' CO2 ) The notation M' denotes the conjugate transpose of the matrix M.Arguments
Input/Output Parameters
Z11 (input) COMPLEX*16 Upper left element of the non-trivial factor Z in the factorization of S. Z12 (input) COMPLEX*16 Upper right element of the non-trivial factor Z in the factorization of S. Z22 (input) COMPLEX*16 Lower right element of the non-trivial factor Z in the factorization of S. H11 (input) COMPLEX*16 Upper left element of the Hamiltonian matrix H. H12 (input) COMPLEX*16 Upper right element of the Hamiltonian matrix H. CO1 (output) DOUBLE PRECISION Upper left element of Q. SI1 (output) COMPLEX*16 Upper right element of Q. CO2 (output) DOUBLE PRECISION Upper left element of U. SI2 (output) COMPLEX*16 Upper right element of U.Method
The algorithm uses unitary and unitary symplectic transformations as described on page 37 in [1].References
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H. Numerical Computation of Deflating Subspaces of Embedded Hamiltonian Pencils. Tech. Rep. SFB393/99-15, Technical University Chemnitz, Germany, June 1999.Numerical Aspects
The algorithm is numerically backward stable.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None