MB03GZ

Exchanging eigenvalues of a complex 2-by-2 skew-Hamiltonian/Hamiltonian pencil in structured Schur form (factored version)

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute a unitary matrix Q and a unitary symplectic matrix U
  for a complex regular 2-by-2 skew-Hamiltonian/Hamiltonian pencil
  aS - bH with S = J Z' J' Z, where

         (  Z11  Z12  )         (  H11  H12  )
     Z = (            ) and H = (            ),
         (   0   Z22  )         (   0  -H11' )

  such that U' Z Q, (J Q J' )' H Q are both upper triangular, but the  
  eigenvalues of (J Q J')' ( aS - bH ) Q are in reversed order.
  The matrices Q and U are represented by

         (  CO1  SI1  )         (  CO2  SI2  )
     Q = (            ) and U = (            ), respectively.
         ( -SI1' CO1  )         ( -SI2' CO2  )

  The notation M' denotes the conjugate transpose of the matrix M.


Arguments

Input/Output Parameters

  Z11     (input) COMPLEX*16
          Upper left element of the non-trivial factor Z in the
          factorization of S.

  Z12     (input) COMPLEX*16
          Upper right element of the non-trivial factor Z in the
          factorization of S.

  Z22     (input) COMPLEX*16
          Lower right element of the non-trivial factor Z in the
          factorization of S.

  H11     (input) COMPLEX*16
          Upper left element of the Hamiltonian matrix H.

  H12     (input) COMPLEX*16
          Upper right element of the Hamiltonian matrix H.

  CO1     (output) DOUBLE PRECISION
          Upper left element of Q.

  SI1     (output) COMPLEX*16
          Upper right element of Q.

  CO2     (output) DOUBLE PRECISION
          Upper left element of U.

  SI2     (output) COMPLEX*16
          Upper right element of U.

Method
  The algorithm uses unitary and unitary symplectic transformations
  as described on page 37 in [1].

References
  [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
      Numerical Computation of Deflating Subspaces of Embedded
      Hamiltonian Pencils.
      Tech. Rep. SFB393/99-15, Technical University Chemnitz,
      Germany, June 1999.

Numerical Aspects
  The algorithm is numerically backward stable.

Further Comments
  None
Example

Program Text

  None
Program Data
  None
Program Results
  None

Return to Supporting Routines index