MB03DZ

Exchanging eigenvalues of a complex 2-by-2 upper triangular pencil

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute unitary matrices Q1 and Q2 for a complex 2-by-2 regular
  pencil aA - bB with A, B upper triangular, such that
  Q2' (aA - bB) Q1 is still upper triangular but the eigenvalues are
  in reversed order. The matrices Q1 and Q2 are represented by

       (  CO1  SI1  )       (  CO2  SI2  )
  Q1 = (            ), Q2 = (            ).
       ( -SI1' CO1  )       ( -SI2' CO2  )

  The notation M' denotes the conjugate transpose of the matrix M.

Specification
      SUBROUTINE MB03DZ( A, LDA, B, LDB, CO1, SI1, CO2, SI2 )
C     .. Scalar Arguments ..
      INTEGER            LDA, LDB
      DOUBLE PRECISION   CO1, CO2
      COMPLEX*16         SI1, SI2
C     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), B( LDB, * )

Arguments

Input/Output Parameters

  A       (input) COMPLEX*16 array, dimension (LDA, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix A of the pencil.
          The (2,1) entry is not referenced.

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= 2.

  B       (input) COMPLEX*16 array, dimension (LDB, 2)
          On entry, the leading 2-by-2 upper triangular part of
          this array must contain the matrix B of the pencil.
          The (2,1) entry is not referenced.

  LDB     INTEGER
          The leading dimension of the array B.  LDB >= 2.

  CO1     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q1.

  SI1     (output) COMPLEX*16
          The upper right element of the unitary matrix Q1.

  CO2     (output) DOUBLE PRECISION
          The upper left element of the unitary matrix Q2.

  SI2     (output) COMPLEX*16
          The upper right element of the unitary matrix Q2.

Method
  The algorithm uses unitary transformations as described on page 42
  in [1].

References
  [1] Benner, P., Byers, R., Mehrmann, V. and Xu, H.
      Numerical Computation of Deflating Subspaces of Embedded
      Hamiltonian Pencils.
      Tech. Rep. SFB393/99-15, Technical University Chemnitz,
      Germany, June 1999.

Numerical Aspects
  The algorithm is numerically backward stable.

Further Comments
  None
Example

Program Text

  None
Program Data
  None
Program Results
  None

Return to Supporting Routines index