Purpose
To compute unitary matrices Q1, Q2, and Q3 for a complex 2-by-2 regular pencil aAB - bD, with A, B, D upper triangular, such that Q3' A Q2, Q2' B Q1, Q3' D Q1 are still upper triangular, but the eigenvalues are in reversed order. The matrices Q1, Q2, and Q3 are represented by ( CO1 SI1 ) ( CO2 SI2 ) ( CO3 SI3 ) Q1 = ( ), Q2 = ( ), Q3 = ( ). ( -SI1' CO1 ) ( -SI2' CO2 ) ( -SI3' CO3 ) The notation M' denotes the conjugate transpose of the matrix M.Specification
SUBROUTINE MB03CZ( A, LDA, B, LDB, D, LDD, CO1, SI1, CO2, SI2, $ CO3, SI3 ) C .. Scalar Arguments .. INTEGER LDA, LDB, LDD DOUBLE PRECISION CO1, CO2, CO3 COMPLEX*16 SI1, SI2, SI3 C .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), D( LDD, * )Arguments
Input/Output Parameters
A (input) COMPLEX*16 array, dimension (LDA, 2) On entry, the leading 2-by-2 upper triangular part of this array must contain the matrix A of the pencil. The (2,1) entry is not referenced. LDA INTEGER The leading dimension of the array A. LDA >= 2. B (input) COMPLEX*16 array, dimension (LDB, 2) On entry, the leading 2-by-2 upper triangular part of this array must contain the matrix B of the pencil. The (2,1) entry is not referenced. LDB INTEGER The leading dimension of the array B. LDB >= 2. D (input) COMPLEX*16 array, dimension (LDD, 2) On entry, the leading 2-by-2 upper triangular part of this array must contain the matrix D of the pencil. The (2,1) entry is not referenced. LDD INTEGER The leading dimension of the array D. LDD >= 2. CO1 (output) DOUBLE PRECISION The upper left element of the unitary matrix Q1. SI1 (output) COMPLEX*16 The upper right element of the unitary matrix Q1. CO2 (output) DOUBLE PRECISION The upper left element of the unitary matrix Q2. SI2 (output) COMPLEX*16 The upper right element of the unitary matrix Q2. CO3 (output) DOUBLE PRECISION The upper left element of the unitary matrix Q3. SI3 (output) COMPLEX*16 The upper right element of the unitary matrix Q3.Method
The algorithm uses unitary transformations as described on page 37 in [1].References
[1] Benner, P., Byers, R., Mehrmann, V. and Xu, H. Numerical Computation of Deflating Subspaces of Embedded Hamiltonian Pencils. Tech. Rep. SFB393/99-15, Technical University Chemnitz, Germany, June 1999.Numerical Aspects
The algorithm is numerically backward stable.Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None