MB02TZ

Estimation of the reciprocal condition number of a complex upper Hessenberg matrix

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To estimate the reciprocal of the condition number of a complex
  upper Hessenberg matrix H, in either the 1-norm or the
  infinity-norm, using the LU factorization computed by MB02SZ.

Specification
      SUBROUTINE MB02TZ( NORM, N, HNORM, H, LDH, IPIV, RCOND, DWORK,
     $                   ZWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          NORM
      INTEGER            INFO, LDH, N
      DOUBLE PRECISION   HNORM, RCOND
C     .. Array Arguments ..
      INTEGER            IPIV(*)
      DOUBLE PRECISION   DWORK( * )
      COMPLEX*16         H( LDH, * ), ZWORK( * )

Arguments

Mode Parameters

  NORM    CHARACTER*1
          Specifies whether the 1-norm condition number or the
          infinity-norm condition number is required:
          = '1' or 'O':  1-norm;
          = 'I':         Infinity-norm.

Input/Output Parameters
  N       (input) INTEGER
          The order of the matrix H.  N >= 0.

  HNORM   (input) DOUBLE PRECISION
          If NORM = '1' or 'O', the 1-norm of the original matrix H.
          If NORM = 'I', the infinity-norm of the original matrix H.

  H       (input) COMPLEX*16 array, dimension (LDH,N)
          The factors L and U from the factorization H = P*L*U
          as computed by MB02SZ.

  LDH     INTEGER
          The leading dimension of the array H.  LDH >= max(1,N).

  IPIV    (input) INTEGER array, dimension (N)
          The pivot indices; for 1 <= i <= N, row i of the matrix
          was interchanged with row IPIV(i).

  RCOND   (output) DOUBLE PRECISION
          The reciprocal of the condition number of the matrix H,
          computed as RCOND = 1/(norm(H) * norm(inv(H))).

Workspace
  DWORK   DOUBLE PRECISION array, dimension (N)

  ZWORK   COMPLEX*16 array, dimension (2*N)

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.

Method
  An estimate is obtained for norm(inv(H)), and the reciprocal of
  the condition number is computed as
     RCOND = 1 / ( norm(H) * norm(inv(H)) ).

References
  -

Numerical Aspects
                             2
  The algorithm requires 0( N ) complex operations.

Further Comments
  None
Example

Program Text

  None
Program Data
  None
Program Results
  None

Return to index