Purpose
To compute an LU factorization of an n-by-n upper Hessenberg matrix H using partial pivoting with row interchanges.Specification
SUBROUTINE MB02SD( N, H, LDH, IPIV, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDH, N C .. Array Arguments .. INTEGER IPIV(*) DOUBLE PRECISION H(LDH,*)Arguments
Input/Output Parameters
N (input) INTEGER The order of the matrix H. N >= 0. H (input/output) DOUBLE PRECISION array, dimension (LDH,N) On entry, the n-by-n upper Hessenberg matrix to be factored. On exit, the factors L and U from the factorization H = P*L*U; the unit diagonal elements of L are not stored, and L is lower bidiagonal. LDH INTEGER The leading dimension of the array H. LDH >= max(1,N). IPIV (output) INTEGER array, dimension (N) The pivot indices; for 1 <= i <= N, row i of the matrix was interchanged with row IPIV(i).Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; > 0: if INFO = i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.Method
The factorization has the form H = P * L * U where P is a permutation matrix, L is lower triangular with unit diagonal elements (and one nonzero subdiagonal), and U is upper triangular. This is the right-looking Level 1 BLAS version of the algorithm (adapted after DGETF2).References
-Numerical Aspects
2 The algorithm requires 0( N ) operations.Further Comments
NoneExample
Program Text
* MB02SD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, NRHMAX PARAMETER ( NMAX = 20, NRHMAX = 20 ) INTEGER LDB, LDH PARAMETER ( LDB = NMAX, LDH = NMAX ) INTEGER LDWORK PARAMETER ( LDWORK = 3*NMAX ) INTEGER LIWORK PARAMETER ( LIWORK = NMAX ) * .. Local Scalars .. DOUBLE PRECISION HNORM, RCOND INTEGER I, INFO, INFO1, J, N, NRHS CHARACTER*1 NORM, TRANS * .. Local Arrays .. DOUBLE PRECISION H(LDH,NMAX), B(LDB,NRHMAX), DWORK(LDWORK) INTEGER IPIV(NMAX), IWORK(LIWORK) * .. External Functions .. DOUBLE PRECISION DLAMCH, DLANHS EXTERNAL DLAMCH, DLANHS * .. External Subroutines .. EXTERNAL DLASET, MB02RD, MB02SD, MB02TD * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read in the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, NRHS, NORM, TRANS IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99994 ) N ELSE READ ( NIN, FMT = * ) ( ( H(I,J), J = 1,N ), I = 1,N ) IF ( NRHS.LT.0 .OR. NRHS.GT.NRHMAX ) THEN WRITE ( NOUT, FMT = 99993 ) NRHS ELSE READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,NRHS ), I = 1,N ) IF ( N.GT.2 ) $ CALL DLASET( 'Lower', N-2, N-2, ZERO, ZERO, H(3,1), LDH ) * Compute the LU factorization of the upper Hessenberg matrix. CALL MB02SD( N, H, LDH, IPIV, INFO ) * Estimate the reciprocal condition number of the matrix. HNORM = DLANHS( NORM, N, H, LDH, DWORK ) CALL MB02TD( NORM, N, HNORM, H, LDH, IPIV, RCOND, IWORK, $ DWORK, INFO1 ) IF ( INFO.EQ.0 .AND. RCOND.GT.DLAMCH( 'Epsilon' ) ) THEN * Solve the linear system. CALL MB02RD( TRANS, N, NRHS, H, LDH, IPIV, B, LDB, INFO ) * WRITE ( NOUT, FMT = 99997 ) ELSE WRITE ( NOUT, FMT = 99998 ) INFO END IF DO 10 I = 1, N WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,NRHS ) 10 CONTINUE WRITE ( NOUT, FMT = 99995 ) RCOND END IF END IF STOP * 99999 FORMAT (' MB02SD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB02SD = ',I2) 99997 FORMAT (' The solution matrix is ') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' Reciprocal condition number = ',D12.4) 99994 FORMAT (/' N is out of range.',/' N = ',I5) 99993 FORMAT (/' NRHS is out of range.',/' NRHS = ',I5) ENDProgram Data
MB02SD EXAMPLE PROGRAM DATA 5 4 O N 1. 2. 6. 3. 5. -2. -1. -1. 0. -2. 0. 3. 1. 5. 1. 0. 0. 2. 0. -4. 0. 0. 0. 1. 4. 5. 5. 1. 5. -2. 1. 3. 1. 0. 0. 4. 5. 2. 1. 1. 3. -1. 3. 3. 1.Program Results
MB02SD EXAMPLE PROGRAM RESULTS The solution matrix is 0.0435 1.2029 1.6377 1.1014 1.0870 -4.4275 -5.5580 -2.9638 0.9130 0.7609 -0.1087 0.6304 -0.8261 2.4783 4.2174 2.7391 -0.0435 0.1304 -0.3043 -0.4348 Reciprocal condition number = 0.1554D-01