Purpose
To compute a low rank QR factorization with column pivoting of a K*M-by-L*N block Toeplitz matrix T with blocks of size (K,L); specifically, T T P = Q R , where R is lower trapezoidal, P is a block permutation matrix and Q^T Q = I. The number of columns in R is equivalent to the numerical rank of T with respect to the given tolerance TOL1. Note that the pivoting scheme is local, i.e., only columns belonging to the same block in T are permuted.Specification
SUBROUTINE MB02JX( JOB, K, L, M, N, TC, LDTC, TR, LDTR, RNK, Q, $ LDQ, R, LDR, JPVT, TOL1, TOL2, DWORK, LDWORK, $ INFO ) C .. Scalar Arguments .. CHARACTER JOB INTEGER INFO, K, L, LDQ, LDR, LDTC, LDTR, LDWORK, M, N, $ RNK DOUBLE PRECISION TOL1, TOL2 C .. Array Arguments .. DOUBLE PRECISION DWORK(LDWORK), Q(LDQ,*), R(LDR,*), TC(LDTC,*), $ TR(LDTR,*) INTEGER JPVT(*)Arguments
Mode Parameters
JOB CHARACTER*1 Specifies the output of the routine as follows: = 'Q': computes Q and R; = 'R': only computes R.Input/Output Parameters
K (input) INTEGER The number of rows in one block of T. K >= 0. L (input) INTEGER The number of columns in one block of T. L >= 0. M (input) INTEGER The number of blocks in one block column of T. M >= 0. N (input) INTEGER The number of blocks in one block row of T. N >= 0. TC (input) DOUBLE PRECISION array, dimension (LDTC, L) The leading M*K-by-L part of this array must contain the first block column of T. LDTC INTEGER The leading dimension of the array TC. LDTC >= MAX(1,M*K). TR (input) DOUBLE PRECISION array, dimension (LDTR,(N-1)*L) The leading K-by-(N-1)*L part of this array must contain the first block row of T without the leading K-by-L block. LDTR INTEGER The leading dimension of the array TR. LDTR >= MAX(1,K). RNK (output) INTEGER The number of columns in R, which is equivalent to the numerical rank of T. Q (output) DOUBLE PRECISION array, dimension (LDQ,RNK) If JOB = 'Q', then the leading M*K-by-RNK part of this array contains the factor Q. If JOB = 'R', then this array is not referenced. LDQ INTEGER The leading dimension of the array Q. LDQ >= MAX(1,M*K), if JOB = 'Q'; LDQ >= 1, if JOB = 'R'. R (output) DOUBLE PRECISION array, dimension (LDR,RNK) The leading N*L-by-RNK part of this array contains the lower trapezoidal factor R. LDR INTEGER The leading dimension of the array R. LDR >= MAX(1,N*L) JPVT (output) INTEGER array, dimension (MIN(M*K,N*L)) This array records the column pivoting performed. If JPVT(j) = k, then the j-th column of T*P was the k-th column of T.Tolerances
TOL1 DOUBLE PRECISION If TOL1 >= 0.0, the user supplied diagonal tolerance; if TOL1 < 0.0, a default diagonal tolerance is used. TOL2 DOUBLE PRECISION If TOL2 >= 0.0, the user supplied offdiagonal tolerance; if TOL2 < 0.0, a default offdiagonal tolerance is used.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK; DWORK(2) and DWORK(3) return the used values for TOL1 and TOL2, respectively. On exit, if INFO = -19, DWORK(1) returns the minimum value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= MAX( 3, ( M*K + ( N - 1 )*L )*( L + 2*K ) + 9*L + MAX(M*K,(N-1)*L) ), if JOB = 'Q'; LDWORK >= MAX( 3, ( N - 1 )*L*( L + 2*K + 1 ) + 9*L, M*K*( L + 1 ) + L ), if JOB = 'R'.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: due to perturbations induced by roundoff errors, or removal of nearly linearly dependent columns of the generator, the Schur algorithm encountered a situation where a diagonal element in the negative generator is larger in magnitude than the corresponding diagonal element in the positive generator (modulo TOL1); = 2: due to perturbations induced by roundoff errors, or removal of nearly linearly dependent columns of the generator, the Schur algorithm encountered a situation where diagonal elements in the positive and negative generator are equal in magnitude (modulo TOL1), but the offdiagonal elements suggest that these columns are not linearly dependent (modulo TOL2*ABS(diagonal element)).Method
Householder transformations and modified hyperbolic rotations are used in the Schur algorithm [1], [2]. If, during the process, the hyperbolic norm of a row in the leading part of the generator is found to be less than or equal to TOL1, then this row is not reduced. If the difference of the corresponding columns has a norm less than or equal to TOL2 times the magnitude of the leading element, then this column is removed from the generator, as well as from R. Otherwise, the algorithm breaks down. TOL1 is set to norm(TC)*sqrt(eps) and TOL2 is set to N*L*sqrt(eps) by default. If M*K > L, the columns of T are permuted so that the diagonal elements in one block column of R have decreasing magnitudes.References
[1] Kailath, T. and Sayed, A. Fast Reliable Algorithms for Matrices with Structure. SIAM Publications, Philadelphia, 1999. [2] Kressner, D. and Van Dooren, P. Factorizations and linear system solvers for matrices with Toeplitz structure. SLICOT Working Note 2000-2, 2000.Numerical Aspects
The algorithm requires 0(K*RNK*L*M*N) floating point operations.Further Comments
NoneExample
Program Text
* MB02JX EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER KMAX, LMAX, MMAX, NMAX PARAMETER ( KMAX = 20, LMAX = 20, MMAX = 20, NMAX = 20 ) INTEGER LDR, LDQ, LDTC, LDTR, LDWORK PARAMETER ( LDR = NMAX*LMAX, LDQ = MMAX*KMAX, $ LDTC = MMAX*KMAX, LDTR = KMAX, $ LDWORK = ( MMAX*KMAX + NMAX*LMAX ) $ *( LMAX + 2*KMAX ) + 5*LMAX $ + MMAX*KMAX + NMAX*LMAX ) * .. Local Scalars .. CHARACTER JOB INTEGER I, INFO, J, K, L, M, N, RNK DOUBLE PRECISION TOL1, TOL2 * .. Local Arrays .. INTEGER JPVT(NMAX*LMAX) DOUBLE PRECISION DWORK(LDWORK), Q(LDQ,NMAX*LMAX), $ R(LDR,NMAX*LMAX), TC(LDTC,LMAX), $ TR(LDTR,NMAX*LMAX) * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL MB02JX * .. Intrinsic Functions .. INTRINSIC MIN * * .. Executable Statements .. WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) K, L, M, N, TOL1, TOL2, JOB IF( K.LE.0 .OR. K.GT.KMAX ) THEN WRITE ( NOUT, FMT = 99991 ) K ELSE IF( L.LE.0 .OR. L.GT.LMAX ) THEN WRITE ( NOUT, FMT = 99990 ) L ELSE IF( M.LE.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99989 ) M ELSE IF( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99988 ) N ELSE READ ( NIN, FMT = * ) ( ( TC(I,J), J = 1,L ), I = 1,M*K ) READ ( NIN, FMT = * ) ( ( TR(I,J), J = 1,( N - 1 )*L ), $ I = 1,K ) * Compute the required part of the QR factorization. CALL MB02JX( JOB, K, L, M, N, TC, LDTC, TR, LDTR, RNK, Q, LDQ, $ R, LDR, JPVT, TOL1, TOL2, DWORK, LDWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99994 ) RNK IF ( LSAME( JOB, 'Q' ) ) THEN WRITE ( NOUT, FMT = 99997 ) DO 10 I = 1, M*K WRITE ( NOUT, FMT = 99993 ) ( Q(I,J), J = 1, RNK ) 10 CONTINUE END IF WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, N*L WRITE ( NOUT, FMT = 99993 ) ( R(I,J), J = 1, RNK ) 20 CONTINUE WRITE ( NOUT, FMT = 99995 ) WRITE ( NOUT, FMT = 99992 ) ( JPVT(I), $ I = 1, MIN( M*K, N*L ) ) END IF END IF STOP * 99999 FORMAT (' MB02JX EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB02JX = ',I2) 99997 FORMAT (/' The factor Q is ') 99996 FORMAT (/' The factor R is ') 99995 FORMAT (/' The column permutation is ') 99994 FORMAT (/' Numerical rank ',/' RNK = ',I5) 99993 FORMAT (20(1X,F8.4)) 99992 FORMAT (20(1X,I4)) 99991 FORMAT (/' K is out of range.',/' K = ',I5) 99990 FORMAT (/' L is out of range.',/' L = ',I5) 99989 FORMAT (/' M is out of range.',/' M = ',I5) 99988 FORMAT (/' N is out of range.',/' N = ',I5) ENDProgram Data
MB02JX EXAMPLE PROGRAM DATA 3 3 4 4 -1.0D0 -1.0D0 Q 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 0.0 1.0 1.0 1.0 0.0 2.0 2.0 0.0 1.0 2.0 3.0 1.0 2.0 3.0 0.0 1.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 2.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 1.0 1.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0 0.0 1.0 0.0Program Results
MB02JX EXAMPLE PROGRAM RESULTS Numerical rank RNK = 7 The factor Q is -0.3313 -0.0105 -0.0353 0.0000 -0.4714 -0.8165 0.0000 -0.3313 -0.0105 -0.0353 0.0000 -0.4714 0.4082 0.7071 -0.3313 -0.0105 -0.0353 0.0000 -0.4714 0.4082 -0.7071 -0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000 -0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000 -0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000 -0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000 -0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000 -0.3313 -0.0105 -0.0353 0.0000 0.2357 0.0000 0.0000 -0.1104 0.2824 0.9529 0.0000 0.0000 0.0000 0.0000 0.0000 0.4288 -0.1271 0.8944 0.0000 0.0000 0.0000 0.0000 0.8576 -0.2541 -0.4472 0.0000 0.0000 0.0000 The factor R is -9.0554 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -3.0921 2.3322 0.0000 0.0000 0.0000 0.0000 0.0000 -5.9633 1.9557 -1.2706 0.0000 0.0000 0.0000 0.0000 -9.2762 4.4238 0.7623 1.3416 0.0000 0.0000 0.0000 -6.1842 2.9492 0.5082 0.8944 0.0000 0.0000 0.0000 -3.0921 1.4746 0.2541 0.4472 0.0000 0.0000 0.0000 -9.2762 4.4238 0.7623 1.3416 0.0000 0.0000 0.0000 -6.1842 2.9492 0.5082 0.8944 0.0000 0.0000 0.0000 -3.0921 1.4746 0.2541 0.4472 0.0000 0.0000 0.0000 -7.2885 4.4866 0.9741 1.3416 2.8284 0.0000 0.0000 -2.7608 1.4851 0.2894 0.4472 0.4714 0.8165 0.0000 -5.5216 2.9701 0.5788 0.8944 0.9428 0.4082 0.7071 The column permutation is 3 1 2 6 5 4 9 8 7 12 10 11