MB02JD

Full QR factorization of a block Toeplitz matrix of full rank

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute a lower triangular matrix R and a matrix Q with
  Q^T Q = I such that
                                 T
                        T  =  Q R ,

  where T is a K*M-by-L*N block Toeplitz matrix with blocks of size
  (K,L). The first column of T will be denoted by TC and the first
  row by TR. It is assumed that the first MIN(M*K, N*L) columns of T
  have full rank.

  By subsequent calls of this routine the factors Q and R can be
  computed block column by block column.

Specification
      SUBROUTINE MB02JD( JOB, K, L, M, N, P, S, TC, LDTC, TR, LDTR, Q,
     $                   LDQ, R, LDR, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         JOB
      INTEGER           INFO, K, L, LDQ, LDR, LDTC, LDTR, LDWORK,
     $                  M, N, P, S
C     .. Array Arguments ..
      DOUBLE PRECISION  DWORK(LDWORK), Q(LDQ,*), R(LDR,*), TC(LDTC,*),
     $                  TR(LDTR,*)

Arguments

Mode Parameters

  JOB     CHARACTER*1
          Specifies the output of the routine as follows:
          = 'Q':  computes Q and R;
          = 'R':  only computes R.

Input/Output Parameters
  K       (input)  INTEGER
          The number of rows in one block of T.  K >= 0.

  L       (input)  INTEGER
          The number of columns in one block of T.  L >= 0.

  M       (input)  INTEGER
          The number of blocks in one block column of T.  M >= 0.

  N       (input)  INTEGER
          The number of blocks in one block row of T.  N >= 0.

  P       (input)  INTEGER
          The number of previously computed block columns of R.
          P*L < MIN( M*K,N*L ) + L and P >= 0.

  S       (input)  INTEGER
          The number of block columns of R to compute.
          (P+S)*L < MIN( M*K,N*L ) + L and S >= 0.

  TC      (input) DOUBLE PRECISION array, dimension (LDTC, L)
          On entry, if P = 0, the leading M*K-by-L part of this
          array must contain the first block column of T.

  LDTC    INTEGER
          The leading dimension of the array TC.
          LDTC >= MAX(1,M*K).

  TR      (input)  DOUBLE PRECISION array, dimension (LDTR,(N-1)*L)
          On entry, if P = 0, the leading K-by-(N-1)*L part of this
          array must contain the first block row of T without the
          leading K-by-L block.

  LDTR    INTEGER
          The leading dimension of the array TR.
          LDTR >= MAX(1,K).

  Q       (input/output)  DOUBLE PRECISION array, dimension
                          (LDQ,MIN( S*L, MIN( M*K,N*L )-P*L ))
          On entry, if JOB = 'Q'  and  P > 0, the leading M*K-by-L
          part of this array must contain the last block column of Q
          from a previous call of this routine.
          On exit, if JOB = 'Q'  and  INFO = 0, the leading
          M*K-by-MIN( S*L, MIN( M*K,N*L )-P*L ) part of this array
          contains the P-th to (P+S)-th block columns of the factor
          Q.

  LDQ     INTEGER
          The leading dimension of the array Q.
          LDQ >= MAX(1,M*K), if JOB = 'Q';
          LDQ >= 1,          if JOB = 'R'.

  R       (input/output)  DOUBLE PRECISION array, dimension
                          (LDR,MIN( S*L, MIN( M*K,N*L )-P*L ))
          On entry, if P > 0, the leading (N-P+1)*L-by-L
          part of this array must contain the nozero part of the
          last block column of R from a previous call of this
          routine.
          One exit, if INFO = 0, the leading
          MIN( N, N-P+1 )*L-by-MIN( S*L, MIN( M*K,N*L )-P*L )
          part of this array contains the nonzero parts of the P-th
          to (P+S)-th block columns of the lower triangular
          factor R.
          Note that elements in the strictly upper triangular part
          will not be referenced.

  LDR     INTEGER
          The leading dimension of the array R.
          LDR >= MAX( 1, MIN( N, N-P+1 )*L )

Workspace
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.
          On exit, if INFO = -17,  DWORK(1) returns the minimum
          value of LDWORK.
          If JOB = 'Q', the first 1 + ( (N-1)*L + M*K )*( 2*K + L )
          elements of DWORK should be preserved during successive
          calls of the routine.
          If JOB = 'R', the first 1 + (N-1)*L*( 2*K + L ) elements
          of DWORK should be preserved during successive calls of
          the routine.

  LDWORK  INTEGER
          The length of the array DWORK.
          JOB = 'Q':
             LDWORK >= 1 + ( M*K + ( N - 1 )*L )*( L + 2*K ) + 6*L
                         + MAX( M*K,( N - MAX( 1,P )*L ) );
          JOB = 'R':
             If P = 0,
                LDWORK >= MAX( 1 + ( N - 1 )*L*( L + 2*K ) + 6*L
                                 + (N-1)*L, M*K*( L + 1 ) + L );
             If P > 0,
                LDWORK >= 1 + (N-1)*L*( L + 2*K ) + 6*L + (N-P)*L.
          For optimum performance LDWORK should be larger.

          If LDWORK = -1, then a workspace query is assumed;
          the routine only calculates the optimal size of the
          DWORK array, returns this value as the first entry of
          the DWORK array, and no error message related to LDWORK
          is issued by XERBLA.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the full rank condition for the first MIN(M*K, N*L)
                columns of T is (numerically) violated.

Method
  Block Householder transformations and modified hyperbolic
  rotations are used in the Schur algorithm [1], [2].

References
  [1] Kailath, T. and Sayed, A.
      Fast Reliable Algorithms for Matrices with Structure.
      SIAM Publications, Philadelphia, 1999.

  [2] Kressner, D. and Van Dooren, P.
      Factorizations and linear system solvers for matrices with
      Toeplitz structure.
      SLICOT Working Note 2000-2, 2000.

Numerical Aspects
  The implemented method yields a factor R which has comparable
  accuracy with the Cholesky factor of T^T * T. Q is implicitly
  computed from the formula Q = T * inv(R^T R) * R, i.e., for ill
  conditioned problems this factor is of very limited value.
                              2
  The algorithm requires 0(K*L *M*N) floating point operations.

Further Comments
  None
Example

Program Text

*     MB02JD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          KMAX, LMAX, MMAX, NMAX
      PARAMETER        ( KMAX = 10, LMAX = 10, MMAX = 20, NMAX = 20 )
      INTEGER          LDR, LDQ, LDTC, LDTR, LDWORK
      PARAMETER        ( LDR  = NMAX*LMAX, LDQ  = MMAX*KMAX,
     $                   LDTC = MMAX*KMAX, LDTR = KMAX,
     $                   LDWORK = ( MMAX*KMAX + NMAX*LMAX )
     $                            *( LMAX + 2*KMAX ) + 6*LMAX
     $                            + MMAX*KMAX + NMAX*LMAX )
*     .. Local Scalars ..
      INTEGER          I, INFO, J, K, L, M, N, S
      CHARACTER        JOB
*     .. Local Arrays ..
      DOUBLE PRECISION DWORK(LDWORK), Q(LDQ,NMAX*LMAX),
     $                 R(LDR,NMAX*LMAX), TC(LDTC,LMAX),
     $                 TR(LDTR,NMAX*LMAX)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         MB02JD
*     .. Intrinsic Functions ..
      INTRINSIC        MIN
*
*     .. Executable Statements ..
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) K, L, M, N, JOB
      IF( K.LE.0 .OR. K.GT.KMAX ) THEN
         WRITE ( NOUT, FMT = 99994 ) K
      ELSE IF( L.LE.0 .OR. L.GT.LMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) L
      ELSE IF( M.LE.0 .OR. M.GT.MMAX ) THEN
         WRITE ( NOUT, FMT = 99992 ) M
      ELSE IF( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99991 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( TC(I,J), J = 1,L ), I = 1,M*K )
         READ ( NIN, FMT = * ) ( ( TR(I,J), J = 1,( N - 1 )*L ),
     $                             I = 1,K )
         S = ( MIN( M*K, N*L ) + L - 1 ) / L
*        Compute the required part of the QR factorization.
         CALL MB02JD( JOB, K, L, M, N, 0, S, TC, LDTC, TR, LDTR, Q, LDQ,
     $                R, LDR, DWORK, LDWORK, INFO )
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            IF ( LSAME( JOB, 'Q' ) ) THEN
               WRITE ( NOUT, FMT = 99997 )
               DO 10  I = 1, M*K
                  WRITE ( NOUT, FMT = 99995 )
     $                  ( Q(I,J), J = 1, MIN( N*L, M*K ) )
   10          CONTINUE
            END IF
            WRITE ( NOUT, FMT = 99996 )
            DO 20  I = 1, N*L
               WRITE ( NOUT, FMT = 99995 )
     $               ( R(I,J), J = 1, MIN( N*L, M*K ) )
   20       CONTINUE
         END IF
      END IF
*
      STOP
*
99999 FORMAT (' MB02JD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MB02JD = ',I2)
99997 FORMAT (/' The factor Q is ')
99996 FORMAT (/' The factor R is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' K is out of range.',/' K = ',I5)
99993 FORMAT (/' L is out of range.',/' L = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' N is out of range.',/' N = ',I5)
      END
Program Data
MB02JD EXAMPLE PROGRAM DATA
    2   3    4    3    Q
     1.0     4.0     0.0
     4.0     1.0     2.0
     4.0     2.0     2.0
     5.0     3.0     2.0
     2.0     4.0     4.0
     5.0     3.0     4.0
     2.0     2.0     5.0
     4.0     2.0     3.0
     3.0     4.0     2.0     5.0     0.0     4.0
     5.0     1.0     1.0     2.0     4.0     1.0
Program Results
 MB02JD EXAMPLE PROGRAM RESULTS


 The factor Q is 
  -0.0967   0.7166  -0.4651   0.1272   0.4357   0.0435   0.2201   0.0673
  -0.3867  -0.3108  -0.0534   0.5251   0.0963  -0.3894   0.1466   0.5412
  -0.3867  -0.0990  -0.1443  -0.7021   0.3056  -0.3367  -0.3233   0.1249
  -0.4834  -0.0178  -0.3368  -0.1763  -0.5446   0.5100   0.1503   0.2054
  -0.1933   0.5859   0.3214   0.1156  -0.4670  -0.3199  -0.4185   0.0842
  -0.4834  -0.0178   0.1072   0.0357  -0.0575  -0.2859   0.4339  -0.6928
  -0.1933   0.1623   0.7251  -0.1966   0.2736   0.3058   0.3398   0.2968
  -0.3867  -0.0990   0.0777   0.3615   0.3386   0.4421  -0.5693  -0.2641

 The factor R is 
 -10.3441   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
  -6.3805   4.7212   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000
  -7.3472   1.9320   4.5040   0.0000   0.0000   0.0000   0.0000   0.0000
 -10.0541   2.5101   0.5065   3.6550   0.0000   0.0000   0.0000   0.0000
  -6.5738   3.6127   1.2702  -1.3146   3.5202   0.0000   0.0000   0.0000
  -5.2204   2.4764   2.4113   1.3890   1.2780   2.4976   0.0000   0.0000
  -9.6674   3.2445  -0.5099  -0.0224   2.6548   2.9491   1.0049   0.0000
  -6.3805   0.6968   1.9483   0.3050   0.7002  -2.0220  -2.8246   2.3147
  -4.1570   2.4309  -0.7190  -0.1455   3.0149   0.5454   0.9394  -0.0548

Return to index