Purpose
To compute, for a banded K*M-by-L*N block Toeplitz matrix T with block size (K,L), specified by the nonzero blocks of its first block column TC and row TR, a LOWER triangular matrix R (in band storage scheme) such that T T T T = R R . (1) It is assumed that the first MIN(M*K, N*L) columns of T are linearly independent. By subsequent calls of this routine, the matrix R can be computed block column by block column.Specification
SUBROUTINE MB02HD( TRIU, K, L, M, ML, N, NU, P, S, TC, LDTC, TR, $ LDTR, RB, LDRB, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER TRIU INTEGER INFO, K, L, LDRB, LDTC, LDTR, LDWORK, M, ML, N, $ NU, P, S C .. Array Arguments .. DOUBLE PRECISION DWORK(LDWORK), RB(LDRB,*), TC(LDTC,*), $ TR(LDTR,*)Arguments
Mode Parameters
TRIU CHARACTER*1 Specifies the structure, if any, of the last blocks in TC and TR, as follows: = 'N': TC and TR have no special structure; = 'T': TC and TR are upper and lower triangular, respectively. Depending on the block sizes, two different shapes of the last blocks in TC and TR are possible, as illustrated below: 1) TC TR 2) TC TR x x x x 0 0 x x x x x 0 0 0 0 x x x x 0 0 x x x x x 0 0 0 0 x x x x 0 0 x x x x x 0 0 0 0 x x xInput/Output Parameters
K (input) INTEGER The number of rows in the blocks of T. K >= 0. L (input) INTEGER The number of columns in the blocks of T. L >= 0. M (input) INTEGER The number of blocks in the first block column of T. M >= 1. ML (input) INTEGER The lower block bandwidth, i.e., ML + 1 is the number of nonzero blocks in the first block column of T. 0 <= ML < M and (ML + 1)*K >= L and if ( M*K <= N*L ), ML >= M - INT( ( M*K - 1 )/L ) - 1; ML >= M - INT( M*K/L ) or MOD( M*K, L ) >= K; if ( M*K >= N*L ), ML*K >= N*( L - K ). N (input) INTEGER The number of blocks in the first block row of T. N >= 1. NU (input) INTEGER The upper block bandwidth, i.e., NU + 1 is the number of nonzero blocks in the first block row of T. If TRIU = 'N', 0 <= NU < N and (M + NU)*L >= MIN( M*K, N*L ); if TRIU = 'T', MAX(1-ML,0) <= NU < N and (M + NU)*L >= MIN( M*K, N*L ). P (input) INTEGER The number of previously computed block columns of R. P*L < MIN( M*K,N*L ) + L and P >= 0. S (input) INTEGER The number of block columns of R to compute. (P+S)*L < MIN( M*K,N*L ) + L and S >= 0. TC (input) DOUBLE PRECISION array, dimension (LDTC,L) On entry, if P = 0, the leading (ML+1)*K-by-L part of this array must contain the nonzero blocks in the first block column of T. LDTC INTEGER The leading dimension of the array TC. LDTC >= MAX(1,(ML+1)*K), if P = 0. TR (input) DOUBLE PRECISION array, dimension (LDTR,NU*L) On entry, if P = 0, the leading K-by-NU*L part of this array must contain the 2nd to the (NU+1)-st blocks of the first block row of T. LDTR INTEGER The leading dimension of the array TR. LDTR >= MAX(1,K), if P = 0. RB (output) DOUBLE PRECISION array, dimension (LDRB,MIN( S*L,MIN( M*K,N*L )-P*L )) On exit, if INFO = 0 and TRIU = 'N', the leading MIN( ML+NU+1,N )*L-by-MIN( S*L,MIN( M*K,N*L )-P*L ) part of this array contains the (P+1)-th to (P+S)-th block column of the lower R factor (1) in band storage format. On exit, if INFO = 0 and TRIU = 'T', the leading MIN( (ML+NU)*L+1,N*L )-by-MIN( S*L,MIN( M*K,N*L )-P*L ) part of this array contains the (P+1)-th to (P+S)-th block column of the lower R factor (1) in band storage format. For further details regarding the band storage scheme see the documentation of the LAPACK routine DPBTF2. LDRB INTEGER The leading dimension of the array RB. LDRB >= MAX( MIN( ML+NU+1,N )*L,1 ), if TRIU = 'N'; LDRB >= MAX( MIN( (ML+NU)*L+1,N*L ),1 ), if TRIU = 'T'.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. On exit, if INFO = -17, DWORK(1) returns the minimum value of LDWORK. The first 1 + 2*MIN( ML+NU+1,N )*L*(K+L) elements of DWORK should be preserved during successive calls of the routine. LDWORK INTEGER The length of the array DWORK. Let x = MIN( ML+NU+1,N ), then LDWORK >= 1 + MAX( x*L*L + (2*NU+1)*L*K, 2*x*L*(K+L) + (6+x)*L ), if P = 0; LDWORK >= 1 + 2*x*L*(K+L) + (6+x)*L, if P > 0. For optimum performance LDWORK should be larger. If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message related to LDWORK is issued by XERBLA.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the full rank condition for the first MIN(M*K, N*L) columns of T is (numerically) violated.Method
Householder transformations and modified hyperbolic rotations are used in the Schur algorithm [1], [2].References
[1] Kailath, T. and Sayed, A. Fast Reliable Algorithms for Matrices with Structure. SIAM Publications, Philadelphia, 1999. [2] Kressner, D. and Van Dooren, P. Factorizations and linear system solvers for matrices with Toeplitz structure. SLICOT Working Note 2000-2, 2000.Numerical Aspects
The implemented method yields a factor R which has comparable accuracy with the Cholesky factor of T^T * T. The algorithm requires 2 2 O( L *K*N*( ML + NU ) + N*( ML + NU )*L *( L + K ) ) floating point operations.Further Comments
NoneExample
Program Text
* MB02HD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER KMAX, LMAX, MMAX, MLMAX, NMAX, NUMAX PARAMETER ( KMAX = 20, LMAX = 20, MMAX = 20, MLMAX = 10, $ NMAX = 20, NUMAX = 10 ) INTEGER LDRB, LDTC, LDTR, LDWORK PARAMETER ( LDRB = ( MLMAX + NUMAX + 1 )*LMAX, $ LDTC = ( MLMAX + 1 )*KMAX, LDTR = KMAX ) PARAMETER ( LDWORK = LDRB*LMAX + ( 2*NUMAX + 1 )*LMAX*KMAX $ + 2*LDRB*( KMAX + LMAX ) + LDRB $ + 6*LMAX ) * .. Local Scalars .. INTEGER I, INFO, J, K, L, LENR, M, ML, N, NU, S CHARACTER TRIU * .. Local Arrays .. DOUBLE PRECISION DWORK(LDWORK), RB(LDRB,NMAX*LMAX), $ TC(LDTC,LMAX), TR(LDTR,NMAX*LMAX) * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL MB02HD * .. Intrinsic Functions .. INTRINSIC MIN * * .. Executable Statements .. WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) K, L, M, ML, N, NU, TRIU IF( K.LT.0 .OR. K.GT.KMAX ) THEN WRITE ( NOUT, FMT = 99990 ) K ELSE IF( L.LT.0 .OR. L.GT.LMAX ) THEN WRITE ( NOUT, FMT = 99991 ) L ELSE IF( M.LE.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99992 ) M ELSE IF( ML.LT.0 .OR. ML.GT.MLMAX ) THEN WRITE ( NOUT, FMT = 99993 ) ML ELSE IF( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99994 ) N ELSE IF( NU.LT.0 .OR. NU.GT.NUMAX ) THEN WRITE ( NOUT, FMT = 99995 ) NU ELSE READ ( NIN, FMT = * ) ( ( TC(I,J), J = 1,L ), I = 1,(ML+1)*K ) READ ( NIN, FMT = * ) ( ( TR(I,J), J = 1,NU*L ), I = 1,K ) S = ( MIN( M*K, N*L ) + L - 1 ) / L * Compute the banded R factor. CALL MB02HD( TRIU, K, L, M, ML, N, NU, 0, S, TC, LDTC, TR, $ LDTR, RB, LDRB, DWORK, LDWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) LENR = ( ML + NU + 1 )*L IF ( LSAME( TRIU, 'T' ) ) LENR = ( ML + NU )*L + 1 LENR = MIN( LENR, N*L ) DO 10 I = 1, LENR WRITE ( NOUT, FMT = 99996 ) ( RB(I,J), J = 1, $ MIN( N*L, M*K ) ) 10 CONTINUE END IF END IF STOP * 99999 FORMAT (' MB02HD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB02HD = ',I2) 99997 FORMAT (/' The lower triangular factor R in banded storage ') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' NU is out of range.',/' NU = ',I5) 99994 FORMAT (/' N is out of range.',/' N = ',I5) 99993 FORMAT (/' ML is out of range.',/' ML = ',I5) 99992 FORMAT (/' M is out of range.',/' M = ',I5) 99991 FORMAT (/' L is out of range.',/' L = ',I5) 99990 FORMAT (/' K is out of range.',/' K = ',I5) ENDProgram Data
MB02HD EXAMPLE PROGRAM DATA 2 2 6 2 5 1 N 4.0 4.0 1.0 3.0 2.0 1.0 2.0 2.0 4.0 4.0 3.0 4.0 1.0 3.0 2.0 1.0Program Results
MB02HD EXAMPLE PROGRAM RESULTS The lower triangular factor R in banded storage -7.0711 -2.4125 6.0822 2.9967 5.9732 2.8593 5.8497 2.7914 2.7298 1.9557 -7.4953 -0.0829 5.8986 -0.5571 5.5329 0.2059 5.6797 0.3414 0.9565 0.0000 -4.2426 0.9202 2.4747 -1.6425 2.9472 -1.0052 2.4396 -0.7785 0.0000 0.0000 -5.2326 0.6218 2.8391 -0.0820 3.2670 0.6327 2.7067 0.0000 0.0000 0.0000 -3.5355 0.8207 3.1160 -0.4451 3.5758 0.5701 0.0000 0.0000 0.0000 0.0000 -4.6669 -0.5803 3.9454 0.7682 4.5481 0.0000 0.0000 0.0000 0.0000 0.0000 -1.4142 -0.0415 1.6441 0.4848 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -2.1213 0.0000 2.4662 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000