Purpose
To compute the Cholesky factor of a banded symmetric positive definite (s.p.d.) block Toeplitz matrix, defined by either its first block row, or its first block column, depending on the routine parameter TYPET. By subsequent calls of this routine the Cholesky factor can be computed block column by block column.Specification
SUBROUTINE MB02GD( TYPET, TRIU, K, N, NL, P, S, T, LDT, RB, LDRB, $ DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER TRIU, TYPET INTEGER INFO, K, LDRB, LDT, LDWORK, N, NL, P, S C .. Array Arguments .. DOUBLE PRECISION DWORK(LDWORK), RB(LDRB,*), T(LDT,*)Arguments
Mode Parameters
TYPET CHARACTER*1 Specifies the type of T, as follows: = 'R': T contains the first block row of an s.p.d. block Toeplitz matrix; the Cholesky factor is upper triangular; = 'C': T contains the first block column of an s.p.d. block Toeplitz matrix; the Cholesky factor is lower triangular. This choice results in a column oriented algorithm which is usually faster. Note: in the sequel, the notation x / y means that x corresponds to TYPET = 'R' and y corresponds to TYPET = 'C'. TRIU CHARACTER*1 Specifies the structure of the last block in T, as follows: = 'N': the last block has no special structure; = 'T': the last block is lower / upper triangular.Input/Output Parameters
K (input) INTEGER The number of rows / columns in T, which should be equal to the blocksize. K >= 0. N (input) INTEGER The number of blocks in T. N >= 1. If TRIU = 'N', N >= 1; if TRIU = 'T', N >= 2. NL (input) INTEGER The lower block bandwidth, i.e., NL + 1 is the number of nonzero blocks in the first block column of the block Toeplitz matrix. If TRIU = 'N', 0 <= NL < N; if TRIU = 'T', 1 <= NL < N. P (input) INTEGER The number of previously computed block rows / columns of the Cholesky factor. 0 <= P <= N. S (input) INTEGER The number of block rows / columns of the Cholesky factor to compute. 0 <= S <= N - P. T (input/output) DOUBLE PRECISION array, dimension (LDT,(NL+1)*K) / (LDT,K) On entry, if P = 0, the leading K-by-(NL+1)*K / (NL+1)*K-by-K part of this array must contain the first block row / column of an s.p.d. block Toeplitz matrix. On entry, if P > 0, the leading K-by-(NL+1)*K / (NL+1)*K-by-K part of this array must contain the P-th block row / column of the Cholesky factor. On exit, if INFO = 0, then the leading K-by-(NL+1)*K / (NL+1)*K-by-K part of this array contains the (P+S)-th block row / column of the Cholesky factor. LDT INTEGER The leading dimension of the array T. LDT >= MAX(1,K) / MAX(1,(NL+1)*K). RB (input/output) DOUBLE PRECISION array, dimension (LDRB,MIN(P+NL+S,N)*K) / (LDRB,MIN(P+S,N)*K) On entry, if TYPET = 'R' and TRIU = 'N' and P > 0, the leading (NL+1)*K-by-MIN(NL,N-P)*K part of this array must contain the (P*K+1)-st to ((P+NL)*K)-th columns of the upper Cholesky factor in banded format from a previous call of this routine. On entry, if TYPET = 'R' and TRIU = 'T' and P > 0, the leading (NL*K+1)-by-MIN(NL,N-P)*K part of this array must contain the (P*K+1)-st to (MIN(P+NL,N)*K)-th columns of the upper Cholesky factor in banded format from a previous call of this routine. On exit, if TYPET = 'R' and TRIU = 'N', the leading (NL+1)*K-by-MIN(NL+S,N-P)*K part of this array contains the (P*K+1)-st to (MIN(P+NL+S,N)*K)-th columns of the upper Cholesky factor in banded format. On exit, if TYPET = 'R' and TRIU = 'T', the leading (NL*K+1)-by-MIN(NL+S,N-P)*K part of this array contains the (P*K+1)-st to (MIN(P+NL+S,N)*K)-th columns of the upper Cholesky factor in banded format. On exit, if TYPET = 'C' and TRIU = 'N', the leading (NL+1)*K-by-MIN(S,N-P)*K part of this array contains the (P*K+1)-st to (MIN(P+S,N)*K)-th columns of the lower Cholesky factor in banded format. On exit, if TYPET = 'C' and TRIU = 'T', the leading (NL*K+1)-by-MIN(S,N-P)*K part of this array contains the (P*K+1)-st to (MIN(P+S,N)*K)-th columns of the lower Cholesky factor in banded format. For further details regarding the band storage scheme see the documentation of the LAPACK routine DPBTF2. LDRB INTEGER The leading dimension of the array RB. If TRIU = 'N', LDRB >= MAX( (NL+1)*K,1 ); if TRIU = 'T', LDRB >= NL*K+1.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. On exit, if INFO = -13, DWORK(1) returns the minimum value of LDWORK. The first 1 + ( NL + 1 )*K*K elements of DWORK should be preserved during successive calls of the routine. LDWORK INTEGER The length of the array DWORK. LDWORK >= 1 + ( NL + 1 )*K*K + NL*K. For optimum performance LDWORK should be larger. If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message related to LDWORK is issued by XERBLA.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the reduction algorithm failed. The Toeplitz matrix associated with T is not (numerically) positive definite.Method
Householder transformations and modified hyperbolic rotations are used in the Schur algorithm [1], [2].References
[1] Kailath, T. and Sayed, A. Fast Reliable Algorithms for Matrices with Structure. SIAM Publications, Philadelphia, 1999. [2] Kressner, D. and Van Dooren, P. Factorizations and linear system solvers for matrices with Toeplitz structure. SLICOT Working Note 2000-2, 2000.Numerical Aspects
The implemented method is numerically stable. 3 The algorithm requires O( K *N*NL ) floating point operations.Further Comments
NoneExample
Program Text
* MB02GD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER KMAX, NMAX, NLMAX PARAMETER ( KMAX = 20, NMAX = 20, NLMAX = 20 ) INTEGER LDRB, LDT, LDWORK PARAMETER ( LDRB = ( NLMAX + 1 )*KMAX, LDT = KMAX*NMAX, $ LDWORK = ( NLMAX + 1 )*KMAX*KMAX + $ ( 3 + NLMAX )*KMAX ) * .. Local Scalars .. INTEGER I, J, INFO, K, M, N, NL, SIZR CHARACTER TRIU, TYPET * .. Local Arrays dimensioned for TYPET = 'R' .. DOUBLE PRECISION DWORK(LDWORK), RB(LDRB, NMAX*KMAX), $ T(LDT, NMAX*KMAX) * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL MB02GD * * .. Executable Statements .. WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) K, N, NL, TRIU TYPET = 'R' M = ( NL + 1 )*K IF( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99995 ) N ELSE IF( NL.LE.0 .OR. NL.GT.NLMAX ) THEN WRITE ( NOUT, FMT = 99994 ) NL ELSE IF( K.LE.0 .OR. K.GT.KMAX ) THEN WRITE ( NOUT, FMT = 99993 ) K ELSE READ ( NIN, FMT = * ) ( ( T(I,J), J = 1,M ), I = 1,K ) * Compute the banded Cholesky factor. CALL MB02GD( TYPET, TRIU, K, N, NL, 0, N, T, LDT, RB, LDRB, $ DWORK, LDWORK, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) IF ( LSAME( TRIU, 'T' ) ) THEN SIZR = NL*K + 1 ELSE SIZR = ( NL + 1 )*K END IF DO 10 I = 1, SIZR WRITE ( NOUT, FMT = 99996 ) ( RB(I,J), J = 1, N*K ) 10 CONTINUE END IF END IF STOP * 99999 FORMAT (' MB02GD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB02GD = ',I2) 99997 FORMAT (/' The upper Cholesky factor in banded storage format ') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' N is out of range.',/' N = ',I5) 99994 FORMAT (/' NL is out of range.',/' NL = ',I5) 99993 FORMAT (/' K is out of range.',/' K = ',I5) ENDProgram Data
MB02GD EXAMPLE PROGRAM DATA 2 4 2 T 3.0000 1.0000 0.1000 0.4000 0.2000 0.0000 0.0000 4.0000 0.1000 0.1000 0.0500 0.2000Program Results
MB02GD EXAMPLE PROGRAM RESULTS The upper Cholesky factor in banded storage format 0.0000 0.0000 0.0000 0.0000 0.1155 0.1044 0.1156 0.1051 0.0000 0.0000 0.0000 0.2309 -0.0087 0.2290 -0.0084 0.2302 0.0000 0.0000 0.0577 -0.0174 0.0541 -0.0151 0.0544 -0.0159 0.0000 0.5774 0.0348 0.5704 0.0222 0.5725 0.0223 0.5724 1.7321 1.9149 1.7307 1.9029 1.7272 1.8996 1.7272 1.8995