Purpose
To compute the Cholesky factor and the generator and/or the Cholesky factor of the inverse of a symmetric positive definite (s.p.d.) block Toeplitz matrix T, defined by either its first block row, or its first block column, depending on the routine parameter TYPET. Transformation information is stored.Specification
SUBROUTINE MB02CD( JOB, TYPET, K, N, T, LDT, G, LDG, R, LDR, L, $ LDL, CS, LCS, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER JOB, TYPET INTEGER INFO, K, LCS, LDG, LDL, LDR, LDT, LDWORK, N C .. Array Arguments .. DOUBLE PRECISION CS(*), DWORK(*), G(LDG, *), L(LDL,*), R(LDR,*), $ T(LDT,*)Arguments
Mode Parameters
JOB CHARACTER*1 Specifies the output of the routine, as follows: = 'G': only computes the generator G of the inverse; = 'R': computes the generator G of the inverse and the Cholesky factor R of T, i.e., if TYPET = 'R', then R'*R = T, and if TYPET = 'C', then R*R' = T; = 'L': computes the generator G and the Cholesky factor L of the inverse, i.e., if TYPET = 'R', then L'*L = inv(T), and if TYPET = 'C', then L*L' = inv(T); = 'A': computes the generator G, the Cholesky factor L of the inverse and the Cholesky factor R of T; = 'O': only computes the Cholesky factor R of T. TYPET CHARACTER*1 Specifies the type of T, as follows: = 'R': T contains the first block row of an s.p.d. block Toeplitz matrix; if demanded, the Cholesky factors R and L are upper and lower triangular, respectively, and G contains the transposed generator of the inverse; = 'C': T contains the first block column of an s.p.d. block Toeplitz matrix; if demanded, the Cholesky factors R and L are lower and upper triangular, respectively, and G contains the generator of the inverse. This choice results in a column oriented algorithm which is usually faster. Note: in the sequel, the notation x / y means that x corresponds to TYPET = 'R' and y corresponds to TYPET = 'C'.Input/Output Parameters
K (input) INTEGER The number of rows / columns in T, which should be equal to the blocksize. K >= 0. N (input) INTEGER The number of blocks in T. N >= 0. T (input/output) DOUBLE PRECISION array, dimension (LDT,N*K) / (LDT,K) On entry, the leading K-by-N*K / N*K-by-K part of this array must contain the first block row / column of an s.p.d. block Toeplitz matrix. On exit, if INFO = 0, then the leading K-by-N*K / N*K-by-K part of this array contains, in the first K-by-K block, the upper / lower Cholesky factor of T(1:K,1:K), and in the remaining part, the Householder transformations applied during the process. LDT INTEGER The leading dimension of the array T. LDT >= MAX(1,K), if TYPET = 'R'; LDT >= MAX(1,N*K), if TYPET = 'C'. G (output) DOUBLE PRECISION array, dimension (LDG,N*K) / (LDG,2*K) If INFO = 0 and JOB = 'G', 'R', 'L', or 'A', the leading 2*K-by-N*K / N*K-by-2*K part of this array contains, in the first K-by-K block of the second block row / column, the lower right block of L (necessary for updating factorizations in SLICOT Library routine MB02DD), and in the remaining part, the generator of the inverse of T. Actually, to obtain a generator one has to set G(K+1:2*K, 1:K) = 0, if TYPET = 'R'; G(1:K, K+1:2*K) = 0, if TYPET = 'C'. LDG INTEGER The leading dimension of the array G. LDG >= MAX(1,2*K), if TYPET = 'R' and JOB = 'G', 'R', 'L', or 'A'; LDG >= MAX(1,N*K), if TYPET = 'C' and JOB = 'G', 'R', 'L', or 'A'; LDG >= 1, if JOB = 'O'. R (output) DOUBLE PRECISION array, dimension (LDR,N*K) If INFO = 0 and JOB = 'R', 'A', or 'O', then the leading N*K-by-N*K part of this array contains the upper / lower Cholesky factor of T. The elements in the strictly lower / upper triangular part are not referenced. LDR INTEGER The leading dimension of the array R. LDR >= MAX(1,N*K), if JOB = 'R', 'A', or 'O'; LDR >= 1, if JOB = 'G', or 'L'. L (output) DOUBLE PRECISION array, dimension (LDL,N*K) If INFO = 0 and JOB = 'L', or 'A', then the leading N*K-by-N*K part of this array contains the lower / upper Cholesky factor of the inverse of T. The elements in the strictly upper / lower triangular part are not referenced. LDL INTEGER The leading dimension of the array L. LDL >= MAX(1,N*K), if JOB = 'L', or 'A'; LDL >= 1, if JOB = 'G', 'R', or 'O'. CS (output) DOUBLE PRECISION array, dimension (LCS) If INFO = 0, then the leading 3*(N-1)*K part of this array contains information about the hyperbolic rotations and Householder transformations applied during the process. This information is needed for updating the factorizations in SLICOT Library routine MB02DD. LCS INTEGER The length of the array CS. LCS >= 3*(N-1)*K.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. On exit, if INFO = -16, DWORK(1) returns the minimum value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= MAX(1,(N-1)*K). For optimum performance LDWORK should be larger.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the reduction algorithm failed. The Toeplitz matrix associated with T is not (numerically) positive definite.Method
Householder transformations and modified hyperbolic rotations are used in the Schur algorithm [1], [2].References
[1] Kailath, T. and Sayed, A. Fast Reliable Algorithms for Matrices with Structure. SIAM Publications, Philadelphia, 1999. [2] Kressner, D. and Van Dooren, P. Factorizations and linear system solvers for matrices with Toeplitz structure. SLICOT Working Note 2000-2, 2000.Numerical Aspects
The implemented method is numerically stable. 3 2 The algorithm requires 0(K N ) floating point operations.Further Comments
NoneExample
Program Text
* MB02CD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER KMAX, NMAX PARAMETER ( KMAX = 20, NMAX = 20 ) INTEGER LCS, LDG, LDL, LDR, LDT, LDWORK PARAMETER ( LDG = 2*KMAX, LDL = NMAX*KMAX, LDR = NMAX*KMAX, $ LDT = KMAX, LDWORK = ( NMAX - 1 )*KMAX ) PARAMETER ( LCS = 3*LDWORK ) * .. Local Scalars .. INTEGER I, INFO, J, K, M, N CHARACTER JOB, TYPET * .. Local Arrays .. (Dimensioned for TYPET = 'R'.) DOUBLE PRECISION CS(LCS), DWORK(LDWORK), G(LDG, NMAX*KMAX), $ L(LDL, NMAX*KMAX), R(LDR, NMAX*KMAX), $ T(LDT, NMAX*KMAX) * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. External Subroutines .. EXTERNAL DLASET, MB02CD * * .. Executable Statements .. WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, K, JOB TYPET = 'R' M = N*K IF( N.LE.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99993 ) N ELSE IF( K.LE.0 .OR. K.GT.KMAX ) THEN WRITE ( NOUT, FMT = 99992 ) K ELSE READ ( NIN, FMT = * ) ( ( T(I,J), J = 1,M ), I = 1,K ) * Compute the Cholesky factor(s) and/or the generator. CALL MB02CD( JOB, TYPET, K, N, T, LDT, G, LDG, R, LDR, L, $ LDL, CS, LCS, DWORK, LDWORK, INFO ) IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE IF ( LSAME( JOB, 'G' ) .OR. LSAME( JOB, 'A' ) .OR. $ LSAME( JOB, 'L' ) .OR. LSAME( JOB, 'R' ) ) THEN WRITE ( NOUT, FMT = 99997 ) CALL DLASET( 'Full', K, K, ZERO, ZERO, G(K+1,1), LDG ) DO 10 I = 1, 2*K WRITE ( NOUT, FMT = 99994 ) ( G(I,J), J = 1, M ) 10 CONTINUE END IF IF ( LSAME( JOB, 'L' ) .OR. LSAME( JOB, 'A' ) ) THEN WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, M WRITE ( NOUT, FMT = 99994 ) ( L(I,J), J = 1, M ) 20 CONTINUE END IF IF ( LSAME( JOB, 'R' ) .OR. LSAME( JOB, 'A' ) $ .OR. LSAME( JOB, 'O' ) ) THEN WRITE ( NOUT, FMT = 99995 ) DO 30 I = 1, M WRITE ( NOUT, FMT = 99994 ) ( R(I,J), J = 1, M ) 30 CONTINUE END IF END IF END IF END IF STOP * 99999 FORMAT (' MB02CD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB02CD = ',I2) 99997 FORMAT (' The generator of the inverse of block Toeplitz matrix', $ ' is ') 99996 FORMAT (/' The lower Cholesky factor of the inverse is ') 99995 FORMAT (/' The upper Cholesky factor of block Toeplitz matrix is ' $ ) 99994 FORMAT (20(1X,F8.4)) 99993 FORMAT (/' N is out of range.',/' N = ',I5) 99992 FORMAT (/' K is out of range.',/' K = ',I5) ENDProgram Data
MB02CD EXAMPLE PROGRAM DATA 3 2 A 3.0000 1.0000 0.1000 0.1000 0.2000 0.0500 1.0000 4.0000 0.4000 0.1000 0.0400 0.2000Program Results
MB02CD EXAMPLE PROGRAM RESULTS The generator of the inverse of block Toeplitz matrix is -0.2355 0.5231 -0.0642 0.0077 0.0187 -0.0265 -0.5568 -0.0568 0.0229 0.0060 0.0363 0.0000 0.0000 0.0000 -0.0387 0.0052 0.0003 -0.0575 0.0000 0.0000 0.0119 -0.0265 -0.0110 0.0076 The lower Cholesky factor of the inverse is 0.5774 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1741 0.5222 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0581 0.5812 0.0000 0.0000 0.0000 -0.0142 0.0080 -0.1747 0.5224 0.0000 0.0000 -0.0387 0.0052 0.0003 -0.0575 0.5825 0.0000 0.0119 -0.0265 -0.0110 0.0076 -0.1754 0.5231 The upper Cholesky factor of block Toeplitz matrix is 1.7321 0.5774 0.0577 0.0577 0.1155 0.0289 0.0000 1.9149 0.1915 0.0348 -0.0139 0.0957 0.0000 0.0000 1.7205 0.5754 0.0558 0.0465 0.0000 0.0000 0.0000 1.9142 0.1890 0.0357 0.0000 0.0000 0.0000 0.0000 1.7169 0.5759 0.0000 0.0000 0.0000 0.0000 0.0000 1.9118