Purpose
To compute the matrix product A * B, where A and B are upper quasi-triangular matrices (that is, block upper triangular with 1-by-1 or 2-by-2 diagonal blocks) with the same structure. The result is returned in the array B.Specification
SUBROUTINE MB01TD( N, A, LDA, B, LDB, DWORK, INFO ) C .. Scalar Arguments .. INTEGER INFO, LDA, LDB, N C .. Array Arguments .. DOUBLE PRECISION A(LDA,*), B(LDB,*), DWORK(*)Arguments
Input/Output Parameters
N (input) INTEGER The order of the matrices A and B. N >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the upper quasi-triangular matrix A. The elements below the subdiagonal are not referenced. LDA INTEGER The leading dimension of the array A. LDA >= max(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,N) On entry, the leading N-by-N part of this array must contain the upper quasi-triangular matrix B, with the same structure as matrix A. On exit, the leading N-by-N part of this array contains the computed product A * B, with the same structure as on entry. The elements below the subdiagonal are not referenced. LDB INTEGER The leading dimension of the array B. LDB >= max(1,N).Workspace
DWORK DOUBLE PRECISION array, dimension (N-1)Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: if the matrices A and B have not the same structure, and/or A and B are not upper quasi-triangular.Method
The matrix product A * B is computed column by column, using BLAS 2 and BLAS 1 operations.Further Comments
This routine can be used, for instance, for computing powers of a real Schur form matrix.Example
Program Text
* MB01TD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX PARAMETER ( NMAX = 20 ) INTEGER LDA, LDB PARAMETER ( LDA = NMAX, LDB = NMAX ) INTEGER LDWORK PARAMETER ( LDWORK = NMAX-1 ) * .. Local Scalars .. INTEGER I, INFO, J, N * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), B(LDB,NMAX), DWORK(LDWORK) * .. External Subroutines .. EXTERNAL MB01TD * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read in the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99995 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,N ), I = 1,N ) * Compute the matrix product A*B. CALL MB01TD( N, A, LDA, B, LDB, DWORK, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,N ) 20 CONTINUE END IF END IF STOP * 99999 FORMAT (' MB01TD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from MB01TD = ',I2) 99997 FORMAT (' The matrix product A*B is ') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' N is out of range.',/' N = ',I5) ENDProgram Data
MB01TD EXAMPLE PROGRAM DATA 5 1. 2. 6. 3. 5. -2. -1. -1. 0. -2. 0. 0. 1. 5. 1. 0. 0. 0. 0. -4. 0. 0. 0. 20. 4. 5. 5. 1. 5. 1. -2. 1. 3. 0. -4. 0. 0. 4. 20. 4. 0. 0. 0. 3. 5. 0. 0. 0. 1. -2.Program Results
MB01TD EXAMPLE PROGRAM RESULTS The matrix product A*B is 1.0000 7.0000 31.0000 139.0000 22.0000 -8.0000 -11.0000 -9.0000 -32.0000 2.0000 0.0000 0.0000 4.0000 36.0000 27.0000 0.0000 0.0000 0.0000 -4.0000 8.0000 0.0000 0.0000 0.0000 64.0000 92.0000