MA02OZ

Compute the number of zero rows (and zero columns) of a complex (skew-)Hamiltonian matrix

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the number of zero rows (and zero columns) of a complex
  (skew-)Hamiltonian matrix,

        (  A    D   )
    H = (           ).
        (  E  +/-A' )

Specification
      INTEGER FUNCTION MA02OZ( SKEW, M, A, LDA, DE, LDDE )
C     .. Scalar Arguments ..
      CHARACTER          SKEW
      INTEGER            LDA, LDDE, M
C     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), DE( LDDE, * )

Function Value
  MA02OZ  INTEGER
          The number of zero rows.

Arguments

Mode Parameters

  SKEW    CHARACTER*1
          Specifies whether the matrix is Hamiltonian or skew-
          Hamiltonian as follows:
          = 'H':  The matrix is Hamiltonian;
          = 'S':  The matrix is skew-Hamiltonian.

Input/Output Parameters
  M       (input) INTEGER
          The order of the matrices A, D, and E.  M >= 0.

  A       (input) COMPLEX*16 array, dimension (LDA,M)
          The leading M-by-M part of this array must contain the
          matrix A.

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

  DE      (input) COMPLEX*16 array, dimension (LDDE,M+1)
          The leading M-by-M lower triangular part of this array
          must contain the lower triangular part of the (skew-)
          Hermitian matrix E, and the M-by-M upper triangular
          part of the submatrix in the columns 2 to M+1 of this
          array must contain the upper triangular part of the
          (skew-)Hermitian matrix D. If S is skew-Hamiltonian, the
          real parts of the entries on the diagonal and the first
          superdiagonal of this array, which should be zero, are
          not used. If S is Hamiltonian, the imaginary parts of the
          entries on the diagonal and the first superdiagonal of
          this array, which should be zero, are not used.

  LDDE    INTEGER
          The leading dimension of the array DE.  LDDE >= MAX(1,M).

Further Comments
  None
Example

Program Text

  None
Program Data
  None
Program Results
  None

Return to Supporting Routines index