Purpose
To compute the number of zero rows (and zero columns) of a complex (skew-)Hamiltonian matrix, ( A D ) H = ( ). ( E +/-A' )Specification
INTEGER FUNCTION MA02OZ( SKEW, M, A, LDA, DE, LDDE ) C .. Scalar Arguments .. CHARACTER SKEW INTEGER LDA, LDDE, M C .. Array Arguments .. COMPLEX*16 A( LDA, * ), DE( LDDE, * )Function Value
MA02OZ INTEGER The number of zero rows.Arguments
Mode Parameters
SKEW CHARACTER*1 Specifies whether the matrix is Hamiltonian or skew- Hamiltonian as follows: = 'H': The matrix is Hamiltonian; = 'S': The matrix is skew-Hamiltonian.Input/Output Parameters
M (input) INTEGER The order of the matrices A, D, and E. M >= 0. A (input) COMPLEX*16 array, dimension (LDA,M) The leading M-by-M part of this array must contain the matrix A. LDA INTEGER The leading dimension of the array A. LDA >= max(1,M). DE (input) COMPLEX*16 array, dimension (LDDE,M+1) The leading M-by-M lower triangular part of this array must contain the lower triangular part of the (skew-) Hermitian matrix E, and the M-by-M upper triangular part of the submatrix in the columns 2 to M+1 of this array must contain the upper triangular part of the (skew-)Hermitian matrix D. If S is skew-Hamiltonian, the real parts of the entries on the diagonal and the first superdiagonal of this array, which should be zero, are not used. If S is Hamiltonian, the imaginary parts of the entries on the diagonal and the first superdiagonal of this array, which should be zero, are not used. LDDE INTEGER The leading dimension of the array DE. LDDE >= MAX(1,M).Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None