Purpose
To compute the number of zero rows (and zero columns) of a real (skew-)Hamiltonian matrix, ( A D ) H = ( ). ( E +/-A' )Specification
INTEGER FUNCTION MA02OD( SKEW, M, A, LDA, DE, LDDE ) C .. Scalar Arguments .. CHARACTER SKEW INTEGER LDA, LDDE, M C .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), DE( LDDE, * )Function Value
MA02OD INTEGER The number of zero rows.Arguments
Mode Parameters
SKEW CHARACTER*1 Specifies whether the matrix is Hamiltonian or skew- Hamiltonian as follows: = 'H': The matrix is Hamiltonian; = 'S': The matrix is skew-Hamiltonian.Input/Output Parameters
M (input) INTEGER The order of the matrices A, D, and E. M >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,M) The leading M-by-M part of this array must contain the matrix A. LDA INTEGER The leading dimension of the array A. LDA >= max(1,M). DE (input) DOUBLE PRECISION array, dimension (LDDE,M+1) The leading M-by-M lower triangular part of this array must contain the lower triangular part of the (skew-) symmetric matrix E, and the M-by-M upper triangular part of the submatrix in the columns 2 to M+1 of this array must contain the upper triangular part of the (skew-)symmetric matrix D. If S is skew-Hamiltonian, the parts containing the diagonal and the first superdiagonal of this array, which should be zero, are not referenced. LDDE INTEGER The leading dimension of the array DE. LDDE >= MAX(1,M).Further Comments
NoneExample
Program Text
NoneProgram Data
NoneProgram Results
None