DG01MD

Discrete Fourier transform, or inverse transform, of a complex signal

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the discrete Fourier transform, or inverse transform,
  of a complex signal.

Specification
      SUBROUTINE DG01MD( INDI, N, XR, XI, INFO )
C     .. Scalar Arguments ..
      CHARACTER         INDI
      INTEGER           INFO, N
C     .. Array Arguments ..
      DOUBLE PRECISION  XI(*), XR(*)

Arguments

Mode Parameters

  INDI    CHARACTER*1
          Indicates whether a Fourier transform or inverse Fourier
          transform is to be performed as follows:
          = 'D':  (Direct) Fourier transform;
          = 'I':  Inverse Fourier transform.

Input/Output Parameters
  N       (input) INTEGER
          The number of complex samples.  N must be a power of 2.
          N >= 2.

  XR      (input/output) DOUBLE PRECISION array, dimension (N)
          On entry, this array must contain the real part of either
          the complex signal z if INDI = 'D', or f(z) if INDI = 'I'.
          On exit, this array contains either the real part of the
          computed Fourier transform f(z) if INDI = 'D', or the
          inverse Fourier transform z of f(z) if INDI = 'I'.

  XI      (input/output) DOUBLE PRECISION array, dimension (N)
          On entry, this array must contain the imaginary part of
          either z if INDI = 'D', or f(z) if INDI = 'I'.
          On exit, this array contains either the imaginary part of
          f(z) if INDI = 'D', or z if INDI = 'I'.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.

Method
  If INDI = 'D', then the routine performs a discrete Fourier
  transform on the complex signal Z(i), i = 1,2,...,N. If the result
  is denoted by FZ(k), k = 1,2,...,N, then the relationship between
  Z and FZ is given by the formula:

                  N            ((k-1)*(i-1))
         FZ(k) = SUM ( Z(i) * V              ),
                 i=1
                                  2
  where V = exp( -2*pi*j/N ) and j  = -1.

  If INDI = 'I', then the routine performs an inverse discrete
  Fourier transform on the complex signal FZ(k), k = 1,2,...,N. If
  the result is denoted by Z(i), i = 1,2,...,N, then the
  relationship between Z and FZ is given by the formula:

                 N             ((k-1)*(i-1))
         Z(i) = SUM ( FZ(k) * W              ),
                k=1

  where W = exp( 2*pi*j/N ).

  Note that a discrete Fourier transform, followed by an inverse
  discrete Fourier transform, will result in a signal which is a
  factor N larger than the original input signal.

References
  [1] Rabiner, L.R. and Rader, C.M.
      Digital Signal Processing.
      IEEE Press, 1972.

Numerical Aspects
  The algorithm requires 0( N*log(N) ) operations.

Further Comments
  None
Example

Program Text

*     DG01MD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX
      PARAMETER        ( NMAX = 128 )
*     .. Local Scalars ..
      INTEGER          I, INFO, N
      CHARACTER*1      INDI
*     .. Local Arrays ..
      DOUBLE PRECISION XI(NMAX), XR(NMAX)
*     .. External Subroutines ..
      EXTERNAL         DG01MD
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, INDI
      IF ( N.LE.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99995 ) N
      ELSE
         READ ( NIN, FMT = * ) ( XR(I), XI(I), I = 1,N )
*        Find the Fourier transform of the given complex signal.
         CALL DG01MD( INDI, N, XR, XI, INFO )
*
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE
            WRITE ( NOUT, FMT = 99997 )
            DO 20 I = 1, N
               WRITE ( NOUT, FMT = 99996 ) I, XR(I), XI(I)
   20       CONTINUE
         END IF
      END IF
      STOP
*
99999 FORMAT (' DG01MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from DG01MD = ',I2)
99997 FORMAT (' Components of Fourier transform are',//'   i',6X,
     $       'XR(i)',6X,'XI(i)',/)
99996 FORMAT (I4,3X,F8.4,3X,F8.4)
99995 FORMAT (/' N is out of range.',/' N = ',I5)
      END
Program Data
 DG01MD EXAMPLE PROGRAM DATA
   8     D
  -0.1862   0.1288
   0.3948   0.0671
   0.6788  -0.2417
   0.1861   0.8875
   0.7254   0.9380
   0.5815  -0.2682
   0.4904   0.9312
  -0.9599  -0.3116
Program Results
 DG01MD EXAMPLE PROGRAM RESULTS

 Components of Fourier transform are

   i      XR(i)      XI(i)

   1     1.9109     2.1311
   2    -1.9419    -2.2867
   3    -1.4070    -1.3728
   4     2.2886    -0.6883
   5     1.5059     1.3815
   6    -2.2271     0.2915
   7     0.1470     2.1274
   8    -1.7660    -0.5533

Return to index