DAESolver

Solver for Algebraic Differential Equations (driver)

[Specification][Arguments][Method][References][Comments][Example]

Purpose

  Interface for using a common entry point, DSblock compatible for
  defining Differential Algebraic Equations using several packages.
  The equations follow the form (CASE A):

      F(dx(t)/dt, x(t), u(t), p, t) = 0
      y(t) = g(dx(t)/dx, x(t), u(t), p, t)

  for the most general model which can only be solved by DASSL and
  DASSPK.

  A restricted case can be solved with RADAU5, LSODI, LSOIBT, if
  the system is expressed as (CASE B):

      F(x(t), u(t), p, t)*dx(t)/dt = A(x(t), u(t), p, t)
      y(t) = g(dx(t)/dx, x(t), u(t), p, t)

  And finally, the GELDA package is able to solve DAEs with the 
  expression (CASE C):

      F(u(t), p, t)*dx(t)/dt = A(u(t), p, t)*x(t) + E(u(t), p, t)

  The user must define the subroutines:
     DAEDF:    F(dx(t)/dt, x(t), u(t), p, t)  for CASES: A, B and C
     DAEDA:    A(x(t), u(t), p, t)           for CASES: B and C
     DAEDE:    E(u(t), p, t)                  for CASES: C
     DAEOUT:   g(dx(t)/dx, x(t), u(t), p, t)
  and the Jacobians (JACFX, JACFU, JACFP) if used. The interface 
  adapts the structure to fit all the codes
Specification
     SUBROUTINE DAESolver(ISOLVER,CDAEDF_,CDAEDA_,CDAEDE_,CDAEOUT_,
   $                      CJACFX_,CJACFU_,CJACFP_,CJACFXDOT_,
   $                      NX, NY, NU, NP, TINI, TOUT,
   $                      X, XDOTI, Y, U, P,
   $                      IPAR, RPAR, RTOL, ATOL,
   $                      IWORK, LIWORK, DWORK, LDWORK,
   $                      IWARN, INFO) 
    .. Scalar Arguments ..
    DOUBLE PRECISION    TINI, TOUT
    INTEGER             ISOLVER, IWARN, INFO,
   $                    NX, NY, NU, NP,
   $                    LDWORK, LIWORK    
    CHARACTER*9         CDAEDF_, CDAEDA_,CDAEDE_, CDAEOUT_,
   $                    CJACFX_, CJACFU_, CJACFP_, CJACFXDOT_,
   $                    CDAEDF, CDAEDA,CDAEDE, CDAEOUT,
   $                    CJACFX, CJACFU, CJACFP, CJACFXDOT
    .. Array Arguments ..
    DOUBLE PRECISION    DWORK(LDWORK), RPAR(*), ATOL(*), RTOL(*)
   $                    X(NX), XDOTI(NX), Y(NY), U(NU), P(NP)
    INTEGER             IWORK(LIWORK), IPAR(*)
Arguments

Mode Parameters

   ISOLVER INTEGER
           Indicates the nonlinear solver packages to be used
             = 1: LSODI,
             = 2: LSOIBT,
             = 3: RADAU5,
             = 4: DASSL,
             = 5: DASPK,
             = 6: DGELDA.
Input/Output Parameters
 
     DAEDF   (input) EXTERNAL
             Evaluates the F(dx(t)/dt, x(t), u(t), p, t).

     DAEDA   (input) EXTERNAL
             Evaluates the A(x(t), u(t), p, t).

     DAEDE   (input) EXTERNAL
             Evaluates the E(u(t), p, t).

     DAEOUT  (input) EXTERNAL
             Evaluates the output signals function g.

     JACFX   (input) EXTERNAL
             Evaluates the jacobian matrix with respect to X.

     JACFU   (input) EXTERNAL
             Evaluates the jacobian matrix with respect to U.

     JACFP   (input) EXTERNAL
             Evaluates the jacobian matrix with respect to P.

     NX      (input) INTEGER
             Dimension of the state vector.

     NY      (input) INTEGER
             Dimension of the output vector.

     NU      (input) INTEGER
             Dimension of the input vector.

     NP      (input) INTEGER
             Dimension of the parameter vector.

     TINI    (input) DOUBLE PRECISION
             Initial value of time.

     TOUT    (input) DOUBLE PRECISION
             Final value of time.
  
     X       (input/output) DOUBLE PRECISION array, dimension (NX)
             On entry, array containing the initial state variables.
             On exit, it has the last value of the state variables.
  
     XDOTI   (input) DOUBLE PRECISION array, dimension (NX)
             Array containing dx(t)/dt at initial point.

     Y       (input/output) DOUBLE PRECISION array, dimension (NY)
             On entry, array containing the initial values of Y.
             On exit, it has the results of the system.

     U       (input) DOUBLE PRECISION array, dimension (NU)
             Array containing the input initial values.
  
     P       (input) DOUBLE PRECISION array, dimension (NP)
             Array containing the parameter variables.
  
     IPAR    (input/output) INTEGER array, dimension (201)
             INPUT:
                1..15   General
               16..25   ODEPACK
               26..35   RADAU5
               36..50   DASSL/PK
               51..60   GELDA
               61..100  Reserved
             OUTPUT:
              101..110  General
              111..125  ODEPACK
              126..135  RADAU5
              136..145  DASSL/PK
              146..155  GELDA
              156..200  Reserved
             Any Mode:
              201..     User Available
    
             Common integer parameters for SOLVERS:
                IPAR(1), Tolerance mode
                    0 : both rtol and atol are scalars
                    1 : rtol is a scalar and atol is a vector
                    2 : both rtol and atol are vectors
                IPAR(2), Compute Output Values only at TOUT (and not
                    at the intermediate step). (1:Yes, 0:No)
                IPAR(3), mfjac, Method flag for jacobian
                    0 : No jacobian used (non-stiff method).
                    1 : User supplied full jacobian (stiff).
                    2 : User supplied banded jacobian (stiff).
                    3 : User supplied sparse jacobian (stiff).
                   10 : internally generated full jacobian (stiff).
                   11 : internally generated banded jacobian (stiff).
                   12 : internally generated sparse jacobian (stiff).
                IPAR(6), ml, lower half-bandwithds of the banded
                   jacobian, excluding tne main diagonal.
                IPAR(7), mu, upper half-bandwithds of the banded
                   jacobian, excluding the main diagonal.
         (Note: IPAR(6) and IPAR(7) are obligatories only if the
          jacobian matrix is banded)
                IPAR(101) = Number of steps taken for the problem.
                IPAR(102) = Number of residual evaluations.
                IPAR(103) = Number of jacobian evaluations.

             Common parameters for RADAU5, ODEPACK and DGELDA:
                IPAR(9), mfmass, Method flag for mass-matrix
                    0 : No mass-matrix used (non-stiff method).
                    1 : User supplied full mass-matrix (stiff).
                    2 : User supplied banded mass-matrix (stiff).
                   10 : Identity mass-matrix is used (stiff).
                IPAR(10), mlmass, lower half-bandwithds of the banded
                   mass matrix, excluding the main diagonal.
                IPAR(11), mumass, upper half-bandwithds of the banded
                   mass matrix, excluding the main diagonal.
                IPAR(12), Maximum number of steps allowed during one
                   call to the solver.

             Common parameters for ODEPACK, DASSL, DASPK and DGELDA:
                IPAR(13), Maximum order to be allowed.
                   default values : 12 if meth = 1
                                     5 if meth = 2
                   If exceds the default value, it will be reduced
                   to the default value.
                   In DASSL, DASPK and DGELDA : (1 .LE. MAXORD .LE. 5)
                IPAR(111) = The method order last used(successfully).
                IPAR(112) = The order to be attempted on the next step.

             Common parameters for ODEPACK package:
                IPAR(16), Status Flag
                IPAR(17), Optional inputs, must be 0
                IPAR(18), Maximum number of messages printed,
                   default value is 10.
                IPAR(113) = Index of the component of largest in the
                   weighted local error vector ( e(i)/ewt(i) ).
                IPAR(114) = Length of rwork actually required.
                IPAR(115) = Length of iwork actually required.

             - LSOIBIT
                IPAR(24), mb, block size.
                   (mb .GE. 1) and mb*IPAR(28) = NX
                IPAR(25), nb, number of blocks in the main diagonal.
                   (nb .ge. 4) and nb*IPAR(27) = NX

             - RADAU5
                IPAR(26) Transforms the Jacobian matrix to Hessenberg
                    form.(Only if IPAR(9)=1 and IPAR(3)=1 or 10)
                IPAR(27) Maximum number of Newton iterations in
                    each step.
                IPAR(28) Starting values for Newton's method
                      .EQ. 0 -> is taken the extrapolated collocation
                           solution
                      .NE. 0 -> zero values are used.
                IPAR(29) Dimension of the index 1 variables( >0 ).
                IPAR(30) Dimension of the index 2 variables.
                IPAR(31) Dimension of the index 3 variables.
                IPAR(32) Switch for step size strategy
                      0,1 Mod. Predictive controller(Gustafsson)
                      2   Classical step size control
         IPAR(33) Value of M1 (default 0).
                IPAR(34) Value of M2 (default(M2=M1).
                IPAR(126), Number of accepted steps.
                IPAR(127), Number of rejected steps.
                IPAR(128), Number of LU-Decompositions of both
                    matrices
                IPAR(129), Number of forward-backward substitutions,
                    of both systems.

             Common parameters for DASSL, DASPK and DGELDA solvers:
                IPAR(36),  this parameter enables the code to
                     initialize itself. Must set to 0 to indicate the
                     start of every new problem.
                          0: Yes. (On each new problem)
                          1: No. (Allows 500 new steps)
                IPAR(38), Solver try to compute the initial T, X
                      and XPRIME:
                          0: The initial T, X and XPRIME are
                            consistent.
                          1: Given X_d calculate X_a and X'_d
                          2: Given X' calculate X.
                          ( X_d differential variables in X
                            X_a algebrac variables in X )
               IPAR(136), Total number of error test failures so far.

             Common parameters for DASSL and DASPK solvers:
                IPAR(37),  code solve the problem without invoking
                     any special non negativity constraints:
                          0: Yes
                          1: To have constraint checking only in the
                            initial condition calculation.
                          2: To enforze nonnegativity in X during the
                            integration.
                          3: To enforce both options 1 and 2.
               IPAR(137), Total number of convergence test failures.

             - DASPK
               IPAR(39), DASPK use:
                         0: direct methods (dense or band)
                         1: Krylov method  (iterative)
                         2: Krylov method + Jac (iterative)
               IPAR(41), Proceed to the integration after the initial
                       condition calculation is done. Used when
                       IPAR(38) > 0:    0: Yes
                                        1: No
               IPAR(42), Errors are controled localy on all the
                     variables:      0:Yes
                                     1: No
               IPAR(8), Extra printing
                         0, no printing
                         1, for minimal printing
                         2, for full printing
               IPAR(44), maximum number of iterations in the SPIGMR
                    algorithm. (.LE. NX)
               IPAR(45), number of vectors on which orthogonalization
                    is done in the SPIGMR algorithm. (.LE. IPAR(44))
               IPAR(46), maximum number of restarts of the SPIGMR
                    algorithm per nonlinear iteration. (.GE. 0)
               IPAR(47), maximum number of Newton iterations per
                    Jacobian or preconditioner evaluation. (> 0)
               IPAR(48), maximum number of Jacobian or preconditioner
                    evaluations. (> 0)
               IPAR(49), maximum number of values of the artificial
                    stepsize parameter H to be tried if IPAR(38) = 1.
                    (> 0).
               IPAR(50), flag to turn off the linesearch algorithm.
                        0 : ON
                        1 : OFF (default)
               IPAR(138), number of convergence failures of the linear
                        iteration
               IPAR(139), length of IWORK actually required.
               IPAR(140), length of RWORK actually required.
               IPAR(141), total number of nonlinear iterations.
               IPAR(142), total number of linear (Krylov) iterations
               IPAR(143), number of PSOL calls.

             - DGELDA
               IPAR(51), contains the strangeness index.
               IPAR(52), number of differential components
               IPAR(53), number of algebraic components
               IPAR(54), number of undetermined components
               IPAR(55), method used:
                        if 1 then uses the BDF solver
                           2 then uses the Runge-Kutta solver
               IPAR(56), E(t) and A(t) are: 1  time dependent
                                            0  constants
               IPAR(57), Maximum index of the problem. ( .GE. 0 )
               IPAR(58), Step size strategy:
                    0, Mod. predictive controlled of Gustafsson(safer)
                    1, classical step size control(faster)

     RPAR    (input/output) DOUBLE PRECISION array, dimension (201)
             INPUT:
                1..15   General
               16..25   ODEPACK
               26..35   RADAU5
               36..50   DASSL/PK
               51..60   GELDA
               61..100  Reserved
             OUTPUT:
              101..110  General
              111..125  ODEPACK
              126..135  RADAU5
              136..145  DASSL/PK
              146..155  GELDA
              156..200  Reserved
             Any Mode:
              201..     User Available

             Common parameters for solvers:
                RPAR(1), Initial step size guess.Obligatory in RADAU5.
                RPAR(2), Maximum absolute step size allowed.

             Common parameters for ODEPACK, DASSL, DASPK and DGELDA:
                RPAR(111), Step size in t last used (successfully).
                RPAR(112), Step size to be attempted on the next step.
                RPAR(113), Current value of the independent variable
                   which the solver has actually reached

             Common parameters for ODEPACK solver:
                RPAR(16), Critical value of t which the solver is not
                   overshoot.
                RPAR(17), Minimum absolute step size allowed.
                RPAR(18), Tolerance scale factor, greater than 1.0.

             Parameters for RADAU5 solver:
                RPAR(26), The rounding unit, default 1E-16.
                RPAR(27), The safety factor in step size prediction,
                  default 0.9D0.
                RPAR(28), Decides whether the jacobian should be
                  recomputed, default 0.001D0.
                   Increase when jacobian evaluations are costly
                   For small systems should be smaller.
                RPAR(29), Stopping criterion for Newton's method,
                  default MIN(0.03D0, RTOL(1)**0.5D0).
                RPAR(30), RPAR(31): This saves, together with a
                  large RPAR(28), LU-decompositions and computing
                  time for large systems.
                  Small systems: RPAR(30)=1.D0, RPAR(31)=1.2D0
                  Large full systems: RPAR(30)=0.99D0, RPAR(31)=2.D0
                  might be good.
                RPAR(32), RPAR(33), Parameters for step size
                  selection.Condition: RPAR(32)<=HNEW/HOLD<=RPAR(33)

               Parameters for DASSL, DASPK and DGELDA solvers:
                RPAR(36), Stopping point (Tstop)

               - DASPK
                RPAR(37), convergence test constant in SPIGMR
                    algorithm. (0 .LT. RPAR(37) .LT. 1.0)
                RPAR(38), minimum scaled step in linesearch algorithm.
                    The default is  = (unit roundoff)**(2/3). (> 0)
                RPAR(39), swing factor in the Newton iteration
                    convergence test. (default 0.1) (> 0)

               - DASPK
                RPAR(40), safety factor used in step size prediction.
                RPAR(41) and RPAR(42) restric the relation between the
                    new and old stepsize in step size selection.
                      1/RPAR(41) .LE. Hnew/Hold .LE. 1/RPAR(42)
                RPAR(43), RPAR(44) QUOT1 and QUOT2 repectively.
                    If QUOT1 < Hnew/Hold < QUOT2 and A and E are
                    constants, the work can be saved by setting
                    Hnew=Hold and using the system matrix of the
                    previous step.
Tolerances
     RTOL    DOUBLE PRECISION
             Relative Tolerance.

     ATOL    DOUBLE PRECISION
             Absolute Tolerance.
Workspace
     IWORK   INTEGER array, dimension (LIWORK)

     LIWORK  INTEGER
             Minimum size of DWORK, depending on solver:
             - LSODI, LSOIBT, DASSL
                20 + NX
             - RADAU5
                3*N+20

     DWORK   DOUBLE PRECISION array, dimension (LDWORK)

     LDWORK  INTEGER
             Size of DWORK, depending on solver:
             - LSODI
                22 +  9*NX + NX**2             , IPAR(3) = 1 or 10
                22 + 10*NX + (2*ML + MU)*NX    , IPAR(3) = 2 or 11
             - LSOIBT
                20 + nyh*(maxord + 1) + 3*NX + lenw     where 
                  nyh    = Initial value of NX
                  maxord = Maximum order allowed(default or IPAR(13)
                  lenw   = 3*mb*mb*nb + 2 
             - RADAU5
                N*(LJAC+LMAS+3*LE+12)+20
                 where  LJAC=N               if (full jacobian)
                        LJAC=MLJAC+MUJAC+1   if (banded jacobian)
                   and  LMAS=0               if (IPAR(9) = 10 or 11)
                        LMAS=N               if (IPAR(9) = 1)
                        LMAS=MLMAS+MUMAS+1   if (IPAR(9) = 2)
                   and  LE=N                 if (IPAR(9) = 1 or 10)
                        LE=2*MLJAC+MUJAC+1   if (IPAR(9) = 2 or 11)
             - DASSL
                >= 40 LRW .GE. 40+(MAXORD+4)*NEQ+NEQ**2, IPAR(3) = 1 or 10
                >= 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ,    IPAR(3) = 2
                >= 40+(MAXORD+4)*NEQ+(2*ML+MU+1)*NEQ
                               +2*(NEQ/(ML+MU+1)+1),     IPAR(3) = 11
Warning Indicator
     IWARN   INTEGER
             = 0:  no warning;
             = 1:  LSODI/LSOIBT/RADAU5 do not use the input vector as argument;
             = 2:  LSODI/LSOIBT do not use the param vector as argument;
             = 3:  RTOL and ATOL are used as scalars;
Error Indicator
     INFO    INTEGER
             = 0:  Successful exit;
             < 0:  If INFO = -i, the i-th argument had an illegal
                   value;
             = 1:  Wrong tolerance mode;
             = 2:  Method (IPAR(9)) is not allowed for ODEPACK/RADAU5;
             = 3:  Method (IPAR(3)) is not allowed for LSODE/RADAU5/DASSL;
             = 4:  Option not allowed for IPAR(37);
             = 5:  Option not allowed for IPAR(38);
             = 100+ERROR: RADAU5 returned -ERROR;
             = 200+ERROR: DASSL returned -ERROR;
             = 300+ERROR: DASPK returned -ERROR;
             = 400+ERROR: DGELDA returned -ERROR.
Method
Since the package integrates 8 different solvers, it is possible to solve differential 
equations by means of Backward Differential Formulas, Runge-Kutta, using direct or 
iterative methods (including preconditioning) for the linear system associated, differential 
equations with time-varying coefficients or of order higher than one. The interface facilitates  
the user the work of changing the integrator and testing the results, thus leading a more robust 
and efficient integrated package.
References
  [1]  A.C. Hindmarsh, Brief Description of ODEPACK: A Systematized Collection 
       of ODE Solvers, http://www.netlib.org/odepack/doc                        
                                                                                
  [2]  L.R. Petzold DASSL Library Documentation, http://www.netlib.org/ode/     
                                                                               
  [3]  P.N. Brown, A.C. Hindmarsh, L.R. Petzold, DASPK Package 1995 Revision                                                                               

  [4]  R.S. Maier, Using DASPK on the TMC CM5. Experiences with Two Programming 
       Models, Minesota Supercomputer Center, Technical Report.                 
                                                                               
  [5]  E. Hairer, G. Wanner, Solving Ordinary Dirential Equations II. Stiánd    
       Dirential- Algebraic Problems., Springer Seried in Computational         
       Mathermatics 14, Springer-Verlag 1991, Second Edition 1996.                                                                                             

  [6]  P. Kunkel, V. Mehrmann, W. Rath und J. Weickert, `GELDA: A Software      
       Package for the Solution of General Linear Dirential Algebraic           
       equations', SIAM Journal Scienti^Lc Computing, Vol. 18, 1997, pp.        
       115 - 138.                                                               
                                                                                
  [7]  M. Otter, DSblock: A neutral description of dynamic systems.             
       Version 3.3, http://www.netlib.org/odepack/doc                           
                                                                                
  [8]  M. Otter, H. Elmqvist, The DSblock model interface for exchanging model 
       components, Proceedings of EUROSIM 95, ed. F.Brenenecker, Vienna, Sep.  
       11-15, 1995                                                             
                                                                               
  [9]  M. Otter, The DSblock model interface, version 4.0, Incomplete Draft,   
       http://dv.op.dlr.de/~otter7dsblock/dsblock4.0a.html                     
                                                                               
  [10] Ch. Lubich, U. Novak, U. Pohle, Ch. Engstler, MEXX - Numerical          
       Software for the Integration of Constrained Mechanical Multibody        
       Systems, http://www.netlib.org/odepack/doc                              
                                                                               
  [11] Working Group on Software (WGS), SLICOT Implementation and Documentation
       Standards (version 1.0), WGS-Report 90-1, Eindhoven University of       
       Technology, May 1990.                                                   
                                                                               
  [12] P. Kunkel and V. Mehrmann, Canonical forms for linear differential-     
       algebraic equations with variable coeÆcients., J. Comput. Appl.         
       Math., 56:225{259, 1994.                                                
                                                                               
  [13] Working Group on Software (WGS), SLICOT Implementation and Documentation
       Standards, WGS-Report 96-1, Eindhoven University of Technology, updated:
       Feb. 1998, ../../REPORTS/rep96-1.ps.Z. 
                                                                              
  [14] A. Varga, Standarization of Interface for Nonlinear Systems Software   
       in SLICOT, Deutsches Zentrum ur Luft un Raumfahrt, DLR. SLICOT-Working 
       Note 1998-4, 1998, Available at                                        
       ../../REPORTS/SLWN1998-4.ps.Z.         
                                                                              
  [15] D. Kirk, Optimal Control Theory: An Introduction, Prentice-Hall.       
       Englewood Cli, NJ, 1970.                                               
                                                                              
  [16] F.L. Lewis and V.L. Syrmos, Optimal Control, Addison-Wesley.           
       New York, 1995.                                                        
                                                                             
  [17] W.M.Lioen, J.J.B de Swart, Test Set for Initial Value Problem Solvers,
       Technical Report NM-R9615, CWI, Amsterdam, 1996.                       
       http://www.cwi.nl/cwi/projects/IVPTestset/.                            
                                                                              
  [18] V.Hernandez, I.Blanquer, E.Arias, and P.Ruiz,                          
       Definition and Implementation of a SLICOT Standard Interface and the   
       associated MATLAB Gateway for the Solution of Nonlinear Control Systems
       by using ODE and DAE Packages}, Universidad Politecnica de Valencia,   
       DSIC. SLICOT Working Note 2000-3: July 2000. Available at             
       ../../REPORTS/SLWN2000-3.ps.Z.        
                                                                             
  [19] J.J.B. de Swart, W.M. Lioen, W.A. van der Veen, SIDE, November 25,    
       1998. Available at http://www.cwi.nl/cwi/projects/PSIDE/.             
                                                                             
  [20] Kim, H.Young, F.L.Lewis, D.M.Dawson, Intelligent optimal control of   
       robotic manipulators using neural networks.                           
                                                                             
  [21] J.C.Fernandez, E.Arias, V.Hernandez, L.Penalver, High Performance     
       Algorithm for Tracking Trajectories of Robot Manipulators,            
       Preprints of the Proceedings of the 6th IFAC International Workshop on
       Algorithms and Architectures for Real-Time Control (AARTC-2000),      
       pages 127-134.
Numerical Aspects
  The numerical aspects of the routine lie on the features of the 
  different packages integrated. Several packages are more robust
  than others, and other packages simply cannot deal with problems 
  that others do. For a detailed description of the numerical aspects 
  of each method is recommended to check the references above.
Further Comments
  Several packages (LSODES, LSOIBT) deal only with sparse matrices.  
  The interface checks the suitability of the methods to the 
  parameters and show a warning message if problems could arise.
Example

Program Text
 

*     DAESOLVER EXAMPLE PROGRAM TEXT FOR LSODIX PROBLEM
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER LSODI_, LSOIBT_, RADAU5_, DASSL_, DASPK_, GELDA_
      PARAMETER (LSODI_  = 1, LSOIBT_ = 2)
      PARAMETER (RADAU5_ = 3, DASSL_  = 4, DASPK_  = 5)
      PARAMETER (GELDA_  = 6)
*     .. Executable Statements ..
*
      EXTERNAL IARGC_
      INTEGER IARGC_
      INTEGER NUMARGS
      CHARACTER*80 NAME
      CHARACTER*80 SOLVER
*
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*
      NUMARGS = IARGC_()
*
      CALL GETARG_(0, NAME)
      IF (NUMARGS .NE. 1) THEN
        WRITE (*,*) 'Syntax Error: ',NAME(1:8),' <solver>'
        WRITE (*,*) 'Solvers : LSODI, LSOIBT, RADAU5, DASSL, DASPK, GELD
     &A'
      ELSE
*
        CALL GETARG_(1, SOLVER)
*
        WRITE (*,*) 'Problem: LSODIX   Solver: ',SOLVER(1:7)
*
        IF (SOLVER(1:5) .EQ. 'LSODI') THEN
          CALL TEST(LSODI_)
        ELSEIF (SOLVER(1:6) .EQ. 'LSOIBT') THEN
          CALL TEST(LSOIBT_)
        ELSEIF (SOLVER(1:6) .EQ. 'RADAU5') THEN
          CALL TEST(RADAU5_)
        ELSEIF (SOLVER(1:5) .EQ. 'GELDA') THEN
          CALL TEST(GELDA_)
        ELSEIF (SOLVER(1:5) .EQ. 'DASSL') THEN
          CALL TEST(DASSL_)
        ELSEIF (SOLVER(1:5) .EQ. 'DASPK') THEN
          CALL TEST(DASPK_)
        ELSE
          WRITE (*,*) 'Error: Solver: ', SOLVER,' unknown'
        ENDIF
      ENDIF
*
99999 FORMAT (' DAESOLVER EXAMPLE PROGRAM RESULTS FOR LSODIX PROBLEM'
     .        ,/1X)
      END
 
 
 

      SUBROUTINE TEST( ISOLVER )
*
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     PURPOSE
*
*     Testing subroutine DAESolver
*
*     ARGUMENTS
*
*     Input/Output Parameters
*
*     ISOLVER  (input) INTEGER
*             Indicates the nonlinear solver package to be used:
*             = 1: LSODI,
*             = 2: LSOIBT,
*             = 3: RADAU5,
*             = 4: DASSL,
*             = 5: DASPK,
*             = 6: DGELDA.
*
*     METHOD
*
*     REFERENCES
*
*     CONTRIBUTORS
*
*     REVISIONS
*
*     -
*
*     KEYWORDS
*
*
*     ******************************************************************
*     .. Parameters ..
      INTEGER LSODI_, LSOIBT_, RADAU5_, DASSL_, DASPK_, GELDA_
      PARAMETER (LSODI_  = 1, LSOIBT_ = 2)
      PARAMETER (RADAU5_ = 3, DASSL_  = 4, DASPK_  = 5)
      PARAMETER (GELDA_  = 6)
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          MD, ND, LPAR, LWORK
      PARAMETER        ( MD = 400, ND = 100, LPAR = 201,
     $                   LWORK = 10000 )
*     .. Common variables ..
      COMMON /TESTING/ ISOLVER2
      INTEGER ISOLVER2
*     .. Scalar Arguments ..
      INTEGER  ISOLVER
*     .. Local Scalars ..
      INTEGER          NEQN, NDISC, MLJAC, MUJAC, MLMAS, MUMAS
      INTEGER          IWARN, INFO
      DOUBLE PRECISION ATOL, RTOL, NORM
      LOGICAL          NUMJAC, NUMMAS, CONSIS
*     .. Local Arrays ..
      CHARACTER FULLNM*40, PROBLM*8, TYPE*3
      CHARACTER*9 CDAEDF,CDAEDA,CDAEDE,CDAEOUT,
     $            CJACFX,CJACFU,CJACFP,CJACFXDOT
      INTEGER          IND(MD), IPAR(LPAR), IWORK(LWORK)
      DOUBLE PRECISION T(0:ND), RPAR(LPAR), DWORK(LWORK)
      DOUBLE PRECISION X(MD), XPRIME(MD), Y(MD), U(MD), P(MD), SOLU(MD)
*     .. External Functions ..
      DOUBLE PRECISION DNRM2
      EXTERNAL         DNRM2
*     .. External Subroutines ..
      EXTERNAL         PLSODIX, ILSODIX, SLSODIX
      EXTERNAL         DAXPY
*     .. Executable Statements ..
*
      ISOLVER2 = ISOLVER
      DO 20 I=1,NEQN
         Y(I)=0D0
         U(I)=0D0
         P(I)=0D0
   20 CONTINUE
      DO 40 I=1,LPAR
         IPAR(I)=0
         RPAR(I)=0D0
   40 CONTINUE
      DO 60 I=1,LWORK
         IWORK(I)=0
         DWORK(I)=0D0
   60 CONTINUE
*     Get the problem dependent parameters.
      RTOL=1D-4
      ATOL=1D-6
      IPAR(1)=0
      IPAR(2)=1
      IPAR(3)=1
      IPAR(12)= 10000
      IF (ISOLVER .EQ. LSODI_ .OR. ISOLVER .EQ. RADAU5_) THEN
         IPAR(9)=1
         IPAR(16)=1
C        IPAR(17)=0
         RPAR(1)=1D-3
      ELSE
C           (ISOLVER .EQ. DASSL_ .OR. ISOLVER .EQ. DASPK_)
C        IPAR(36)=0
C        IPAR(37)=0
C        IPAR(38)=0
         IPAR(39)=1
      END IF
      CALL PLSODIX(FULLNM,PROBLM,TYPE,NEQN,NDISC,T,NUMJAC,MLJAC,
     $            MUJAC,NUMMAS,MLMAS,MUMAS,IND)
      CALL ILSODIX(NEQN,T(0),X,XPRIME,CONSIS)
      x(1) = 1.0d0
      x(2) = 0.0d0
      x(3) = 0.0d0
      xprime(1) = -0.04D0
      xprime(2) =  0.04D0
      xprime(3) =  0.0D0
      CALL SLSODIX(NEQN,T(1),SOLU)

      IF ( TYPE.NE.'DAE' ) THEN
         WRITE ( NOUT, FMT = 99998 )
      ELSE
         WRITE ( NOUT, FMT = 99997 ) FULLNM, PROBLM, TYPE, ISOLVER
         CDAEDF=''
         CDAEDA=''
         CDAEDE=''
         CDAEOUT=''
         CJACFX=''
         CJACFU=''
         CJACFP=''
         CJACFXDOT=''

         CALL DAESolver( ISOLVER, CDAEDF, CDAEDA, CDAEDE, CDAEOUT,
     $                   CJACFX, CJACFU, CJACFP, CJACFXDOT,
     $                   NEQN, NEQN, NEQN, NEQN, T(0), T(1),
     $                   X, XPRIME, Y, U, P,
     $                   IPAR, RPAR, RTOL, ATOL,
     $                   IWORK, LWORK, DWORK, LWORK, IWARN, INFO )
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99996 ) INFO
         ELSE
            IF ( IWARN.NE.0 ) THEN
               WRITE ( NOUT, FMT = 99995 ) IWARN
            ENDIF
            IF ( NEQN .LE. 30 ) THEN
               WRITE ( NOUT, FMT = 99994 )
               DO 80 I=1,NEQN
                  WRITE ( NOUT, FMT = 99993 ) I, X(I), SOLU(I)
   80          CONTINUE
            END IF
            NORM=DNRM2(NEQN,SOLU,1)
            IF ( NORM.EQ.0D0 ) THEN
               NORM=1D0
            END IF
            CALL DAXPY(NEQN,-1D0,X,1,SOLU,1)
            NORM=DNRM2(NEQN,SOLU,1)/NORM
            WRITE ( NOUT, FMT = 99992 ) NORM
         END IF
      END IF
*
99998 FORMAT (' ERROR: This test is only intended for DAE problems')
99997 FORMAT (' ',A,' (',A,' , ',A,') with SOLVER ',I2)
99996 FORMAT (' INFO on exit from DAESolver = ',I3)
99995 FORMAT (' IWARN on exit from DAESolver = ',I3)
99994 FORMAT (' Solution: (calculated) (reference)')
99993 FORMAT (I,F,F)
99992 FORMAT (' Relative error comparing with the reference solution:'
     $        ,E,/1X)
* *** Last line of TEST ***
      END
 
 
 

      SUBROUTINE DAEDA_( RPAR, NRP, IPAR, NIP, X, NX, U, NU, P, NP,
     $                   F, LDF, T, INFO )
*
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     PURPOSE
*
*     Interface routine between DAESolver and the problem function FEVAL
*
*     ARGUMENTS
*
*     Input/Output Parameters
*
*     RPAR     (input/output) DOUBLE PRECISION array, dimension (NRP)
*              Array for communication between the driver and FEVAL.
*
*     NRP      (input) INTEGER
*              Dimension of RPAR array.
*
*     IPAR     (input/output) INTEGER array, dimension (NIP)
*              Array for communication between the driver and FEVAL.
*
*     NIP      (input) INTEGER
*              Dimension of IPAR array.
*
*     X        (input) DOUBLE PRECISION array, dimension (NX)
*              Array containing the state variables.
*
*     NX       (input) INTEGER
*              Dimension of the state vector.
*
*     U        (input) DOUBLE PRECISION array, dimension (NU)
*              Array containing the input values.
*
*     NU       (input) INTEGER
*              Dimension of the input vector.
*
*     P        (input) DOUBLE PRECISION array, dimension (NP)
*              Array containing the parameter values.
*
*     NP       (input) INTEGER
*              Dimension of the parameter vector.
*
*     F        (output) DOUBLE PRECISION array, dimension (LDF,NX)
*              The resulting function value f(T,X).
*
*     LDF      (input) INTEGER
*              The leading dimension of F.
*
*     T        (input) INTEGER
*              The time point where the function is evaluated.
*
*     Error Indicator
*
*     INFO     INTEGER
*              Returns values of error from FEVAL or 100 in case
*              a bad problem was choosen.
*
*     METHOD
*
*     REFERENCES
*
*     CONTRIBUTORS
*
*     REVISIONS
*
*     -
*
*     KEYWORDS
*
*
*     ******************************************************************
*
*     .. Common variables ..
      COMMON /TESTING/ ISOLVER
      INTEGER LSODI_, LSOIBT_, RADAU5_, DASSL_, DASPK_, GELDA_
      PARAMETER (LSODI_  = 1, LSOIBT_ = 2)
      PARAMETER (RADAU5_ = 3, DASSL_  = 4, DASPK_  = 5)
      PARAMETER (GELDA_  = 6)
*     .. Scalar Arguments ..
      INTEGER          NRP, NIP, NX, NU, NP, LDF, INFO
      DOUBLE PRECISION T
*     .. Array Arguments ..
      INTEGER          IPAR(NIP)
      DOUBLE PRECISION RPAR(NRP), X(NX), U(NU), P(NP),
     $  F(LDF,NX)
*     .. External Subroutines ..
      EXTERNAL         FLSODIX
*     .. Executable Statements ..
      CALL FLSODIX(NX,T,X,X,F,INFO,RPAR,IPAR)
* *** Last line of DAEDA_ ***
      END
 
 
 

      SUBROUTINE DAEDF_( RPAR, NRP, IPAR, NIP, X, XPRIME, NX,
     $                  U, NU, P, NP, T, F, LDF, INFO )
*
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     PURPOSE
*
*     Interface routine between DAESolver and the problem function MEVAL
*
*     ARGUMENTS
*
*     Input/Output Parameters
*
*     RPAR     (input/output) DOUBLE PRECISION array, dimension (NRP)
*              Array for communication between the driver and MEVAL.
*
*     NRP      (input) INTEGER
*              Dimension of RPAR array.
*
*     IPAR     (input/output) INTEGER array, dimension (NIP)
*              Array for communication between the driver and MEVAL.
*
*     NIP      (input) INTEGER
*              Dimension of IPAR array.
*
*     X        (input) DOUBLE PRECISION array, dimension (NX)
*              Array containing the state variables.
*
*     XPRIME   (input) DOUBLE PRECISION array, dimension (NX)
*              Array containing the state variables derivative.
*
*     NX       (input) INTEGER
*              Dimension of the state vector.
*
*     U        (input) DOUBLE PRECISION array, dimension (NU)
*              Array containing the input values.
*
*     NU       (input) INTEGER
*              Dimension of the input vector.
*
*     P        (input) DOUBLE PRECISION array, dimension (NP)
*              Array containing the parameter values.
*
*     NP       (input) INTEGER
*              Dimension of the parameter vector.
*
*     T        (input) INTEGER
*              The time point where the function is evaluated.
*
*     F        (output) DOUBLE PRECISION array, dimension (LDF,NX)
*              The resulting function value f(T,X).
*
*     LDF      (input) INTEGER
*              The leading dimension of F.
*
*     Error Indicator
*
*     INFO     INTEGER
*              Returns values of error from MEVAL or 100 in case
*              a bad problem was choosen.
*
*     METHOD
*
*     REFERENCES
*
*     CONTRIBUTORS
*
*     REVISIONS
*
*     -
*
*     KEYWORDS
*
*
*     ******************************************************************
*
*     .. Common variables ..
      COMMON /TESTING/ ISOLVER
      INTEGER ISOLVER
      INTEGER LSODI_, LSOIBT_, RADAU5_, DASSL_, DASPK_, GELDA_
      PARAMETER (LSODI_  = 1, LSOIBT_ = 2)
      PARAMETER (RADAU5_ = 3, DASSL_  = 4, DASPK_  = 5)
      PARAMETER (GELDA_  = 6)
*     .. Scalar Arguments ..
      INTEGER          NRP, NIP, NX, NU, NP, LDF, INFO
      DOUBLE PRECISION T
*     .. Array Arguments ..
      INTEGER          IPAR(NIP)
      DOUBLE PRECISION RPAR(NRP), X(NX), XPRIME(NX), U(NU), P(NP),
     $  F(LDF,NX)
*     .. Local Scalars ..
      INTEGER          I
*     .. External Subroutines ..
      EXTERNAL         MLSODIX, RLSODIX
*     .. Executable Statements ..
      IF (ISOLVER .EQ. DASSL_ .OR. ISOLVER .EQ. DASPK_) THEN
        CALL RLSODIX(LDF,NX,T,X,XPRIME,F,INFO,RPAR,IPAR)
      ELSE
        CALL MLSODIX(LDF,NX,T,X,XPRIME,F,INFO,RPAR,IPAR)
      ENDIF
* *** Last line of DAEDF_ ***
      END
 
 
 

      SUBROUTINE  JACFX_( NRP, NIP, RPAR, IPAR, NX, NU,
     $                    NP, X, U, P, T, FX, LDFX,
     $                    INFO )
*
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     PURPOSE
*
*     Interface routine between DAESolver and the problem function JEVAL
*
*     ARGUMENTS
*
*     Input/Output Parameters
*
*     NRP      (input) INTEGER
*              Dimension of RPAR array.
*
*     NIP      (input) INTEGER
*              Dimension of IPAR array.
*
*     RPAR     (input/output) DOUBLE PRECISION array
*              Array for communication between the driver and JEVAL.
*
*     IPAR     (input/output) INTEGER array
*              Array for communication between the driver and JEVAL.
*
*     NX       (input) INTEGER
*              Dimension of the state vector.
*
*     NU       (input) INTEGER
*              Dimension of the input vector.
*
*     NP       (input) INTEGER
*              Dimension of the parameter vector.
*
*     X        (input) DOUBLE PRECISION array, dimension (NX)
*              Array containing the state variables.
*
*     U        (input) DOUBLE PRECISION array, dimension (NU)
*              Array containing the input values.
*
*     P        (input) DOUBLE PRECISION array, dimension (NP)
*              Array containing the parameter values.
*
*     T        (input) INTEGER
*              The time point where the derivative is evaluated.
*
*     FX       (output) DOUBLE PRECISION array, dimension (LDFX,NX)
*              The array with the resulting Jacobian matrix.
*
*     LDFX     (input) INTEGER
*              The leading dimension of the array FX.
*
*     Error Indicator
*
*     INFO     INTEGER
*              Returns values of error from JEVAL or 100 in case
*              a bad problem was choosen.
*
*     METHOD
*
*     REFERENCES
*
*     CONTRIBUTORS
*
*     REVISIONS
*
*     -
*
*     KEYWORDS
*
*
*     ******************************************************************
*
*     .. Common variables ..
      COMMON /TESTING/ ISOLVER
      INTEGER LSODI_, LSOIBT_, RADAU5_, DASSL_, DASPK_, GELDA_
      PARAMETER (LSODI_  = 1, LSOIBT_ = 2)
      PARAMETER (RADAU5_ = 3, DASSL_  = 4, DASPK_  = 5)
      PARAMETER (GELDA_  = 6)
*     .. Scalar Arguments ..
      INTEGER          NRP, NIP, NX, NU, NP, LDFX, INFO
      DOUBLE PRECISION T
*     .. Array Arguments ..
      INTEGER          IPAR(NIP)
      DOUBLE PRECISION X(NX), U(NU), P(NP), RPAR(NRP), FX(LDFX,NX)
*     .. External Subroutines ..
      EXTERNAL         JLSODIX
*     .. Executable Statements ..
      CALL JLSODIX(LDFX,NX,T,X,X,FX,INFO,RPAR,IPAR)
* *** Last line of JACFX_ ***
      END
 
 

      SUBROUTINE JACFXDOT_( NRP, NIP, RPAR, IPAR,
     $                NX, NU, NP, XPRIME, U, P, T, J, LDJ, INFO )
*
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     PURPOSE
*
*     MATJACFXDOT routine for TRANSAMP problem
*
*     ARGUMENTS
*
*     Input/Output Parameters
*
*     NRP      (input) INTEGER
*              Dimension of RPAR array.
*
*     NIP      (input) INTEGER
*              Dimension of IPAR array.
*
*     RPAR     (input/output) DOUBLE PRECISION array
*              Array for communication with the driver.
*
*     IPAR     (input/output) INTEGER array
*              Array for communication with the driver.
*
*     NX       (input) INTEGER
*              Dimension of the state vector.
*
*
*     NU       (input) INTEGER
*              Dimension of the input vector.
*
*     NP       (input) INTEGER
*              Dimension of the parameter vector.
*
*     XPRIME   (input) DOUBLE PRECISION array, dimension (NX)
*              Array containing the derivative of the state variables.
*
*     U        (input) DOUBLE PRECISION array, dimension (NU)
*              Array containing the input values.
*
*     P        (input) DOUBLE PRECISION array, dimension (NP)
*              Array containing the parameter values.
*
*     T        (input) INTEGER
*              The time point where the derivative is evaluated.
*
*     J        (output) DOUBLE PRECISION array, dimension (LDJ,NX)
*              The array with the resulting derivative matrix.
*
*     LDJ      (input) INTEGER
*              The leading dimension of the array J.
*
*     Error Indicator
*
*     INFO     INTEGER
*              Returns 1 in case a bad problem was choosen.
*
*     METHOD
*
*     REFERENCES
*
*     CONTRIBUTORS
*
*     REVISIONS
*
*     -
*
*     KEYWORDS
*
*
*     ******************************************************************
*
*     .. Common variables ..
      COMMON /TESTING/ ISOLVER
      INTEGER LSODI_, LSOIBT_, RADAU5_, DASSL_, DASPK_, GELDA_
      PARAMETER (LSODI_  = 1, LSOIBT_ = 2)
      PARAMETER (RADAU5_ = 3, DASSL_  = 4, DASPK_  = 5)
      PARAMETER (GELDA_  = 6)
*     .. Scalar Arguments ..
      INTEGER          NRP, NIP, NX, NU, NP, LDJ, INFO
      DOUBLE PRECISION T
*     .. Array Arguments ..
      INTEGER          IPAR(NIP)
      DOUBLE PRECISION XPRIME(NX), U(NU), P(NP), RPAR(NRP), J(LDJ,NX)
*     .. Executable Statements ..
*
      CALL JDOTLSODIX(LDJ,NX,T,XPRIME,XPRIME,J,INFO,RPAR,IPAR)
      ENDIF
* *** Last line of JACFXDOT_ ***
      END
 

Program Data

No data required
Program Results
 DAESOLVER EXAMPLE PROGRAM RESULTS
 
 Problem: LSODIX   Solver: LSODI  
 lsodix                                   (lsodix   , DAE) with SOLVER  1
 IWARN on exit from DAESolver =   2
 Solution: (calculated) (reference)
 6.462112224297606E-07
 1.255974374648338E-10
 6.117680951077711E-07
 Relative error comparing with the reference solution:    .8898590685949503E-06


Return to index