Purpose
To generate benchmark examples of (generalized) continuous-time Lyapunov equations T T A X E + E X A = Y . In some examples, the right hand side has the form T Y = - B B and the solution can be represented as a product of Cholesky factors T X = U U . E, A, Y, X, and U are real N-by-N matrices, and B is M-by-N. Note that E can be the identity matrix. For some examples, B, X, or U are not provided. This routine is an implementation of the benchmark library CTLEX (Version 1.0) described in [1].Specification
SUBROUTINE BB03AD(DEF, NR, DPAR, IPAR, VEC, N, M, E, LDE, A, LDA, 1 Y, LDY, B, LDB, X, LDX, U, LDU, NOTE, DWORK, 2 LDWORK, INFO) C .. Scalar Arguments .. CHARACTER DEF CHARACTER*70 NOTE INTEGER INFO, LDA, LDB, LDE, LDU, LDWORK, LDX, LDY, M, N C .. Array Arguments .. LOGICAL VEC(8) INTEGER IPAR(*), NR(*) DOUBLE PRECISION A(LDA,*), B(LDB,*), DPAR(*), DWORK(LDWORK), 1 E(LDE,*), U(LDU,*), X(LDX,*), Y(LDY,*)Arguments
Mode Parameters
DEF CHARACTER*1 Specifies the kind of values used as parameters when generating parameter-dependent and scalable examples (i.e., examples with NR(1) = 2, 3, or 4): DEF = 'D' or 'd': Default values are used. DEF = 'N' or 'n': Values set in DPAR and IPAR are used. This parameter is not referenced if NR(1) = 1. Note that the scaling parameter of examples with NR(1) = 3 or 4 is considered as a regular parameter in this context.Input/Output Parameters
NR (input) INTEGER array, dimension 2 Specifies the index of the desired example according to [1]. NR(1) defines the group: 1 : parameter-free problems of fixed size 2 : parameter-dependent problems of fixed size 3 : parameter-free problems of scalable size 4 : parameter-dependent problems of scalable size NR(2) defines the number of the benchmark example within a certain group according to [1]. DPAR (input/output) DOUBLE PRECISION array, dimension 2 On entry, if DEF = 'N' or 'n' and the desired example depends on real parameters, then the array DPAR must contain the values for these parameters. For an explanation of the parameters see [1]. For Example 4.1, DPAR(1) and DPAR(2) define 'r' and 's', respectively. For Example 4.2, DPAR(1) and DPAR(2) define 'lambda' and 's', respectively. For Examples 4.3 and 4.4, DPAR(1) defines the parameter 't'. On exit, if DEF = 'D' or 'd' and the desired example depends on real parameters, then the array DPAR is overwritten by the default values given in [1]. IPAR (input/output) INTEGER array of DIMENSION at least 1 On entry, if DEF = 'N' or 'n' and the desired example depends on integer parameters, then the array IPAR must contain the values for these parameters. For an explanation of the parameters see [1]. For Examples 4.1, 4.2, and 4.3, IPAR(1) defines 'n'. For Example 4.4, IPAR(1) defines 'q'. On exit, if DEF = 'D' or 'd' and the desired example depends on integer parameters, then the array IPAR is overwritten by the default values given in [1]. VEC (output) LOGICAL array, dimension 8 Flag vector which displays the availability of the output data: VEC(1) and VEC(2) refer to N and M, respectively, and are always .TRUE. VEC(3) is .TRUE. iff E is NOT the identity matrix. VEC(4) and VEC(5) refer to A and Y, respectively, and are always .TRUE. VEC(6) is .TRUE. iff B is provided. VEC(7) is .TRUE. iff the solution matrix X is provided. VEC(8) is .TRUE. iff the Cholesky factor U is provided. N (output) INTEGER The actual state dimension, i.e., the order of the matrices E and A. M (output) INTEGER The number of rows in the matrix B. If B is not provided for the desired example, M = 0 is returned. E (output) DOUBLE PRECISION array, dimension (LDE,N) The leading N-by-N part of this array contains the matrix E. NOTE that this array is overwritten (by the identity matrix), if VEC(3) = .FALSE. LDE INTEGER The leading dimension of array E. LDE >= N. A (output) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array contains the matrix A. LDA INTEGER The leading dimension of array A. LDA >= N. Y (output) DOUBLE PRECISION array, dimension (LDY,N) The leading N-by-N part of this array contains the matrix Y. LDY INTEGER The leading dimension of array Y. LDY >= N. B (output) DOUBLE PRECISION array, dimension (LDB,N) The leading M-by-N part of this array contains the matrix B. LDB INTEGER The leading dimension of array B. LDB >= M. X (output) DOUBLE PRECISION array, dimension (LDX,N) The leading N-by-N part of this array contains the matrix X. LDX INTEGER The leading dimension of array X. LDX >= N. U (output) DOUBLE PRECISION array, dimension (LDU,N) The leading N-by-N part of this array contains the matrix U. LDU INTEGER The leading dimension of array U. LDU >= N. NOTE (output) CHARACTER*70 String containing short information about the chosen example.Workspace
DWORK DOUBLE PRECISION array, dimension (LDWORK) LDWORK INTEGER The length of the array DWORK. For Examples 4.1 and 4.2., LDWORK >= 2*IPAR(1) is required. For the other examples, no workspace is needed, i.e., LDWORK >= 1.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; in particular, INFO = -3 or -4 indicates that at least one of the parameters in DPAR or IPAR, respectively, has an illegal value.References
[1] D. Kressner, V. Mehrmann, and T. Penzl. CTLEX - a Collection of Benchmark Examples for Continuous- Time Lyapunov Equations. SLICOT Working Note 1999-6, 1999.Numerical Aspects
NoneFurther Comments
NoneExample
Program Text
C BB03AD EXAMPLE PROGRAM TEXT C Copyright (c) 2002-2017 NICONET e.V. C C .. Parameters .. INTEGER NIN, NOUT PARAMETER (NIN = 5, NOUT = 6) INTEGER NMAX, MMAX PARAMETER (NMAX = 100, MMAX = 100) INTEGER LDE, LDA, LDY, LDB, LDX, LDU, LDWORK PARAMETER (LDE = NMAX, LDA = NMAX, LDY = NMAX, LDB = MMAX, 1 LDX = NMAX, LDU = NMAX, LDWORK = 2*NMAX) C .. Local Scalars .. CHARACTER DEF INTEGER INFO, N, M, I, J, LDPAR, LIPAR CHARACTER*70 NOTE C .. Local Arrays .. DOUBLE PRECISION E(LDE,NMAX), A(LDA, NMAX), Y(LDY, NMAX), 1 B(LDB,NMAX), X(LDX, NMAX), U(LDU, NMAX), 2 DPAR(2), DWORK(LDWORK) INTEGER NR(2), IPAR(1) LOGICAL VEC(8) C .. External Functions .. LOGICAL LSAME EXTERNAL LSAME C .. External Subroutines .. EXTERNAL BB03AD C .. Executable Statements .. WRITE (NOUT, FMT = 99999) C Skip the heading in the data file and read the data. READ (NIN, FMT = '()') READ (NIN, FMT = *) DEF READ (NIN, FMT = *) (NR(I), I = 1, 2) IF (LSAME(DEF,'N')) THEN READ (NIN, FMT = *) LDPAR IF (LDPAR .GT. 0) READ (NIN, FMT = *) (DPAR(I), I = 1, LDPAR) READ (NIN, FMT = *) LIPAR IF (LIPAR .GT. 0) READ (NIN, FMT = *) (IPAR(I), I = 1, LIPAR) END IF C Generate benchmark example CALL BB03AD(DEF, NR, DPAR, IPAR, VEC, N, M, E, LDE, A, LDA, Y, 1 LDY, B, LDB, X, LDX, U, LDU, NOTE, DWORK, LDWORK, 2 INFO) C IF (INFO .NE. 0) THEN WRITE (NOUT, FMT = 99998) INFO ELSE WRITE (NOUT, FMT = *) NOTE WRITE (NOUT, FMT = 99997) N WRITE (NOUT, FMT = 99996) M IF (VEC(3)) THEN WRITE (NOUT, FMT = 99995) DO 10 I = 1, N WRITE (NOUT, FMT = 99985) (E(I,J), J = 1, N) 10 CONTINUE ELSE WRITE (NOUT, FMT = 99994) END IF WRITE (NOUT,FMT = 99993) DO 20 I = 1, N WRITE (NOUT, FMT = 99985) (A(I,J), J = 1, N) 20 CONTINUE IF (VEC(6)) THEN WRITE (NOUT,FMT = 99992) DO 30 I = 1, M WRITE (NOUT, FMT = 99985) (B(I,J), J = 1, N) 30 CONTINUE ELSE WRITE (NOUT, FMT = 99991) END IF WRITE (NOUT,FMT = 99990) DO 40 I = 1, N WRITE (NOUT, FMT = 99985) (Y(I,J), J = 1, N) 40 CONTINUE IF (VEC(7)) THEN WRITE (NOUT, FMT = 99989) DO 50 I = 1, N WRITE (NOUT, FMT = 99985) (X(I,J), J = 1, N) 50 CONTINUE ELSE WRITE (NOUT, FMT = 99988) END IF IF (VEC(8)) THEN WRITE (NOUT, FMT = 99987) DO 60 I = 1, N WRITE (NOUT, FMT = 99985) (U(I,J), J = 1, N) 60 CONTINUE ELSE WRITE (NOUT, FMT = 99986) END IF END IF C 99999 FORMAT (' BB03AD EXAMPLE PROGRAM RESULTS', /1X) 99998 FORMAT (' INFO on exit from BB03AD = ', I3) 99997 FORMAT (/' Order of matrix A: N = ', I3) 99996 FORMAT (' Number of rows in matrix B: M = ', I3) 99995 FORMAT (/' E = ') 99994 FORMAT (/' E is the identity matrix.') 99993 FORMAT (' A = ') 99992 FORMAT (' B = ') 99991 FORMAT (' B is not provided.') 99990 FORMAT (' Y = ') 99989 FORMAT (' X = ') 99988 FORMAT (' X is not provided.') 99987 FORMAT (' U = ') 99986 FORMAT (' U is not provided.') 99985 FORMAT (20(1X,F8.4)) C ENDProgram Data
BB03AD EXAMPLE PROGRAM DATA N 4 1 2 .15D1 .15D1 1 5Program Results
BB03AD EXAMPLE PROGRAM RESULTS CTLEX: Example 4.1 Order of matrix A: N = 5 Number of rows in matrix B: M = 1 E is the identity matrix. A = -3.6360 -0.6921 -1.1933 -0.8137 0.3507 0.1406 -2.9375 0.9063 0.1562 0.3438 -2.5735 -1.4421 -2.8183 -1.1887 1.2257 -0.3779 0.0810 0.5544 -1.5891 0.0660 0.8961 1.1586 1.6279 0.5631 -2.2066 B = -3.6914 -3.9753 -0.0247 -1.9012 1.1111 Y = -13.6261 -14.6743 -0.0911 -7.0181 4.1015 -14.6743 -15.8031 -0.0982 -7.5580 4.4170 -0.0911 -0.0982 -0.0006 -0.0469 0.0274 -7.0181 -7.5580 -0.0469 -3.6147 2.1125 4.1015 4.4170 0.0274 2.1125 -1.2346 X = 1.7737 1.9307 -0.0703 1.0497 -0.4681 1.9307 2.1036 -0.0752 1.1489 -0.5069 -0.0703 -0.0752 0.0076 -0.0428 0.0178 1.0497 1.1489 -0.0428 0.6509 -0.2651 -0.4681 -0.5069 0.0178 -0.2651 0.1284 U is not provided.