BB02AD

Benchmark examples for discrete-time algebraic Riccati equations

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To generate the benchmark examples for the numerical solution of
  discrete-time algebraic Riccati equations (DAREs) of the form

         T                T               T    -1  T       T
  0  =  A X A  -  X  -  (A X B + S) (R + B X B)  (B X A + S )  +  Q

  as presented in [1]. Here, A,Q,X are real N-by-N matrices, B,S are
  N-by-M, and R is M-by-M. The matrices Q and R are symmetric and Q
  may be given in factored form

                T
  (I)    Q  =  C Q0 C .

  Here, C is P-by-N and Q0 is P-by-P. If R is nonsingular and S = 0,
  the DARE can be rewritten equivalently as

               T             -1
  0  =  X  -  A X (I_n + G X)  A  -  Q,

  where I_n is the N-by-N identity matrix and

                -1  T
  (II)   G = B R   B .

Specification
      SUBROUTINE BB02AD(DEF, NR, DPAR, IPAR, BPAR, CHPAR, VEC, N, M, P,
     1                  A, LDA, B, LDB, C, LDC, Q, LDQ, R, LDR, S, LDS,
     2                  X, LDX, DWORK, LDWORK, INFO)
C     .. Scalar Arguments ..
      INTEGER          INFO, LDA, LDB, LDC, LDQ, LDR, LDS, LDWORK, LDX,
     $                 M, N, P
      CHARACTER        DEF
C     .. Array Arguments ..
      DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DPAR(*), DWORK(*),
     1                 Q(*), R(*), S(LDS,*), X(LDX,*)
      INTEGER          IPAR(3), NR(2)
      CHARACTER        CHPAR*255
      LOGICAL          BPAR(7), VEC(10)

Arguments

Mode Parameters

  DEF     CHARACTER
          This parameter specifies if the default parameters are
          to be used or not.
          = 'N' or 'n' : The parameters given in the input vectors
                         xPAR (x = 'D', 'I', 'B', 'CH') are used.
          = 'D' or 'd' : The default parameters for the example
                         are used.
          This parameter is not meaningful if NR(1) = 1.

Input/Output Parameters
  NR      (input) INTEGER array, dimension (2)
          This array determines the example for which DAREX returns
          data. NR(1) is the group of examples.
          NR(1) = 1 : parameter-free problems of fixed size.
          NR(1) = 2 : parameter-dependent problems of fixed size.
          NR(1) = 3 : parameter-free problems of scalable size.
          NR(1) = 4 : parameter-dependent problems of scalable size.
          NR(2) is the number of the example in group NR(1).
          Let NEXi be the number of examples in group i. Currently,
          NEX1 = 13, NEX2 = 5, NEX3 = 0, NEX4 = 1.
          1 <= NR(1) <= 4;
          0 <= NR(2) <= NEXi, where i = NR(1).

  DPAR    (input/output) DOUBLE PRECISION array, dimension (4)
          Double precision parameter vector. For explanation of the
          parameters see [1].
          DPAR(1) defines the parameter 'epsilon' for
          examples NR = 2.2,2.3,2.4, the parameter 'tau'
          for NR = 2.5, and the 1-by-1 matrix R for NR = 2.1,4.1.
          For Example 2.5, DPAR(2) - DPAR(4) define in
          consecutive order 'D', 'K', and 'r'.
          NOTE that DPAR is overwritten with default values
          if DEF = 'D' or 'd'.

  IPAR    (input/output) INTEGER array, dimension (3)
          On input, IPAR(1) determines the actual state dimension,
          i.e., the order of the matrix A as follows:
          NR(1) = 1, NR(1) = 2   : IPAR(1) is ignored.
          NR = NR(1).NR(2) = 4.1 : IPAR(1) determines the order of
                                   the output matrix A.
          NOTE that IPAR(1) is overwritten for Examples 1.1-2.3. For
          the other examples, IPAR(1) is overwritten if the default
          parameters are to be used.
          On output, IPAR(1) contains the order of the matrix A.

          On input, IPAR(2) is the number of colums in the matrix B
          and the order of the matrix R (in control problems, the
          number of inputs of the system). Currently, IPAR(2) is
          fixed for all examples and thus is not referenced on
          input.
          On output, IPAR(2) is the number of columns of the
          matrix B from (I).

          On input, IPAR(3) is the number of rows in the matrix C
          (in control problems, the number of outputs of the
          system). Currently, IPAR(3) is fixed for all examples
          and thus is not referenced on input.
          On output, IPAR(3) is the number of rows of the matrix C
          from (I).

          NOTE that IPAR(2) and IPAR(3) are overwritten and
          IPAR(2) <= IPAR(1) and IPAR(3) <= IPAR(1) for all
          examples.

  BPAR    (input) LOGICAL array, dimension (7)
          This array defines the form of the output of the examples
          and the storage mode of the matrices Q, G or R.
          BPAR(1) = .TRUE.  : Q is returned.
          BPAR(1) = .FALSE. : Q is returned in factored form, i.e.,
                              Q0 and C from (I) are returned.
          BPAR(2) = .TRUE.  : The matrix returned in array Q (i.e.,
                              Q if BPAR(1) = .TRUE. and Q0 if
                              BPAR(1) = .FALSE.) is stored as full
                              matrix.
          BPAR(2) = .FALSE. : The matrix returned in array Q is
                              provided in packed storage mode.
          BPAR(3) = .TRUE.  : If BPAR(2) = .FALSE., the matrix
                              returned in array Q is stored in upper
                              packed mode, i.e., the upper triangle
                              of a symmetric n-by-n matrix is stored
                              by columns, e.g., the matrix entry
                              Q(i,j) is stored in the array entry
                              Q(i+j*(j-1)/2) for i <= j.
                              Otherwise, this entry is ignored.
          BPAR(3) = .FALSE. : If BPAR(2) = .FALSE., the matrix
                              returned in array Q is stored in lower
                              packed mode, i.e., the lower triangle
                              of a symmetric n-by-n matrix is stored
                              by columns, e.g., the matrix entry
                              Q(i,j) is stored in the array entry
                              Q(i+(2*n-j)*(j-1)/2) for j <= i.
                              Otherwise, this entry is ignored.
          BPAR(4) = .TRUE.  : The product G in (II) is returned.
          BPAR(4) = .FALSE. : G is returned in factored form, i.e.,
                              B and R from (II) are returned.
          BPAR(5) = .TRUE.  : The matrix returned in array R (i.e.,
                              G if BPAR(4) = .TRUE. and R if
                              BPAR(4) = .FALSE.) is stored as full
                              matrix.
          BPAR(5) = .FALSE. : The matrix returned in array R is
                              provided in packed storage mode.
          BPAR(6) = .TRUE.  : If BPAR(5) = .FALSE., the matrix
                              returned in array R is stored in upper
                              packed mode (see above).
                              Otherwise, this entry is ignored.
          BPAR(6) = .FALSE. : If BPAR(5) = .FALSE., the matrix
                              returned in array R is stored in lower
                              packed mode (see above).
                              Otherwise, this entry is ignored.
          BPAR(7) = .TRUE.  : The coefficient matrix S of the DARE
                              is returned in array S.
          BPAR(7) = .FALSE. : The coefficient matrix S of the DARE
                              is not returned.
          NOTE that there are no default values for BPAR.  If all
          entries are declared to be .TRUE., then matrices Q, G or R
          are returned in conventional storage mode, i.e., as
          N-by-N or M-by-M arrays where the array element Z(I,J)
          contains the matrix entry Z_{i,j}.

  CHPAR   (output) CHARACTER*255
          On output, this string contains short information about
          the chosen example.

  VEC     (output) LOGICAL array, dimension (10)
          Flag vector which displays the availability of the output
          data:
          VEC(j), j=1,2,3, refer to N, M, and P, respectively, and
          are always .TRUE.
          VEC(4) refers to A and is always .TRUE.
          VEC(5) is .TRUE. if BPAR(4) = .FALSE., i.e., the factors B
          and R from (II) are returned.
          VEC(6) is .TRUE. if BPAR(1) = .FALSE., i.e., the factors C
          and Q0 from (I) are returned.
          VEC(7) refers to Q and is always .TRUE.
          VEC(8) refers to R and is always .TRUE.
          VEC(9) is .TRUE. if BPAR(7) = .TRUE., i.e., the matrix S
          is returned.
          VEC(10) refers to X and is .TRUE. if the exact solution
          matrix is available.
          NOTE that VEC(i) = .FALSE. for i = 1 to 10 if on exit
          INFO .NE. 0.

  N       (output) INTEGER
          The order of the matrices A, X, G if BPAR(4) = .TRUE., and
          Q if BPAR(1) = .TRUE.

  M       (output) INTEGER
          The number of columns in the matrix B (or the dimension of
          the control input space of the underlying dynamical
          system).

  P       (output) INTEGER
          The number of rows in the matrix C (or the dimension of
          the output space of the underlying dynamical system).

  A       (output) DOUBLE PRECISION array, dimension (LDA,N)
          The leading N-by-N part of this array contains the
          coefficient matrix A of the DARE.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= N.

  B       (output) DOUBLE PRECISION array, dimension (LDB,M)
          If (BPAR(4) = .FALSE.), then the leading N-by-M part
          of this array contains the coefficient matrix B of
          the DARE.  Otherwise, B is used as workspace.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= N.

  C       (output) DOUBLE PRECISION array, dimension (LDC,N)
          If (BPAR(1) = .FALSE.), then the leading P-by-N part
          of this array contains the matrix C of the factored
          form (I) of Q.  Otherwise, C is used as workspace.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= P.

  Q       (output) DOUBLE PRECISION array, dimension (NQ)
          If (BPAR(1) = .TRUE.) and (BPAR(2) = .TRUE.), then
          NQ = LDQ*N.
          IF (BPAR(1) = .TRUE.) and (BPAR(2) = .FALSE.), then
          NQ = N*(N+1)/2.
          If (BPAR(1) = .FALSE.) and (BPAR(2) = .TRUE.), then
          NQ = LDQ*P.
          IF (BPAR(1) = .FALSE.) and (BPAR(2) = .FALSE.), then
          NQ = P*(P+1)/2.
          The symmetric matrix contained in array Q is stored
          according to BPAR(2) and BPAR(3).

  LDQ     INTEGER
          If conventional storage mode is used for Q, i.e.,
          BPAR(2) = .TRUE., then Q is stored like a 2-dimensional
          array with leading dimension LDQ. If packed symmetric
          storage mode is used, then LDQ is irrelevant.
          LDQ >= N if BPAR(1) = .TRUE.;
          LDQ >= P if BPAR(1) = .FALSE..

  R       (output) DOUBLE PRECISION array, dimension (MR)
          If (BPAR(4) = .TRUE.) and (BPAR(5) = .TRUE.), then
          MR = LDR*N.
          IF (BPAR(4) = .TRUE.) and (BPAR(5) = .FALSE.), then
          MR = N*(N+1)/2.
          If (BPAR(4) = .FALSE.) and (BPAR(5) = .TRUE.), then
          MR = LDR*M.
          IF (BPAR(4) = .FALSE.) and (BPAR(5) = .FALSE.), then
          MR = M*(M+1)/2.
          The symmetric matrix contained in array R is stored
          according to BPAR(5) and BPAR(6).

  LDR     INTEGER
          If conventional storage mode is used for R, i.e.,
          BPAR(5) = .TRUE., then R is stored like a 2-dimensional
          array with leading dimension LDR. If packed symmetric
          storage mode is used, then LDR is irrelevant.
          LDR >= N  if BPAR(4) =  .TRUE.;
          LDR >= M  if BPAR(4) = .FALSE..

  S       (output) DOUBLE PRECISION array, dimension (LDS,M)
          If (BPAR(7) = .TRUE.), then the leading N-by-M part of
          this array contains the coefficient matrix S of the DARE.

  LDS     INTEGER
          The leading dimension of array S.  LDS >= 1, and
          LDS >= N if BPAR(7) = .TRUE..

  X       (output) DOUBLE PRECISION array, dimension (LDX,NX)
          If an exact solution is available (NR = 1.1,1.3,1.4,2.1,
          2.3,2.4,2.5,4.1), then NX = N and the leading N-by-N part
          of this array contains the solution matrix X.
          Otherwise, X is not referenced.

  LDX     INTEGER
          The leading dimension of array X.  LDX >= 1, and
          LDX >= N if an exact solution is available.

Workspace
  DWORK   DOUBLE PRECISION array, dimension (LDWORK)

  LDWORK  INTEGER
          The length of the array DWORK.  LDWORK >= N*N.

Error Indicator
  INFO    INTEGER
          = 0 : successful exit;
          < 0 : if INFO = -i, the i-th argument had an illegal
                value;
          = 1 : data file could not be opened or had wrong format;
          = 2 : division by zero;
          = 3 : G can not be computed as in (II) due to a singular R
                matrix. This error can only occur if
                BPAR(4) = .TRUE..

References
  [1] Abels, J. and Benner, P.
      DAREX - A Collection of Benchmark Examples for Discrete-Time
      Algebraic Riccati Equations (Version 2.0).
      SLICOT Working Note 1999-16, November 1999. Available from
      http://www.win.tue.nl/niconet/NIC2/reports.html.

  This is an updated and extended version of

  [2] Benner, P., Laub, A.J., and Mehrmann, V.
      A Collection of Benchmark Examples for the Numerical Solution
      of Algebraic Riccati Equations II: Discrete-Time Case.
      Technical Report SPC 95_23, Fak. f. Mathematik,
      TU Chemnitz-Zwickau (Germany), December 1995.

Further Comments
  Some benchmark examples read data from the data files provided
  with the collection.

Example

Program Text

*     BB02AD EXAMPLE PROGRAM TEXT
*
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          MMAX, NMAX, PMAX
      PARAMETER        ( MMAX = 100, NMAX = 100, PMAX = 100 )
      INTEGER          LDA, LDB, LDC, LDQ, LDR, LDS, LDX
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDQ = NMAX, LDR = NMAX, LDS = NMAX,
     $                   LDX = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = NMAX*NMAX )
*     .. Local Scalars ..
      CHARACTER        DEF
      INTEGER          I, INFO, ISYMM, J, LBPAR, LDPAR, LIPAR, M, N, P
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA, NMAX), B(LDB,MMAX), C(LDC, NMAX),
     $                 DPAR(4), DWORK(LDWORK), Q(LDQ, NMAX),
     $                 R(LDR, NMAX), S(LDS, NMAX), X(LDX, NMAX)
      INTEGER          IPAR(3), NR(2)
      LOGICAL          BPAR(7), VEC(10)
      CHARACTER        CHPAR(255)
*     .. External Functions ..
      LOGICAL          LSAME
      EXTERNAL         LSAME
*     .. External Subroutines ..
      EXTERNAL         BB02AD, MA02DD
*     .. Executable Statements ..
      WRITE( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ( NIN, FMT = '()' )
      READ( NIN, FMT = * ) DEF
      READ( NIN, FMT = * ) ( NR(I), I = 1, 2 )
      IF( LSAME( DEF, 'N' ) ) THEN
        READ( NIN, FMT = * ) LBPAR
        IF( LBPAR.GT.0 ) READ( NIN, FMT = * ) ( BPAR(I), I = 1, LBPAR )
        READ( NIN, FMT = * ) LDPAR
        IF( LDPAR.GT.0 ) READ( NIN, FMT = * ) ( DPAR(I), I = 1, LDPAR )
        READ( NIN, FMT = * ) LIPAR
        IF( LIPAR.GT.0 ) READ( NIN, FMT = * ) ( IPAR(I), I = 1, LIPAR )
      END IF
*     Generate benchmark example
      CALL BB02AD( DEF, NR, DPAR, IPAR, BPAR, CHPAR, VEC, N, M, P, A,
     $             LDA, B, LDB, C, LDC, Q, LDQ, R, LDR, S, LDS, X, LDX,
     $             DWORK, LDWORK, INFO )
*
      IF( INFO.NE.0 ) THEN
        WRITE( NOUT, FMT = 99998 ) INFO
      ELSE
        WRITE( NOUT, FMT = * ) CHPAR(1:70)
        WRITE( NOUT, FMT = 99997 ) N
        WRITE( NOUT, FMT = 99996 ) M
        WRITE( NOUT, FMT = 99995 ) P
        WRITE( NOUT, FMT = 99994 )
        DO 10  I = 1, N
          WRITE( NOUT, FMT = 99977 ) ( A(I,J), J = 1, N )
   10   CONTINUE
        IF( VEC(5) ) THEN
          WRITE( NOUT, FMT = 99993 )
          DO 20  I = 1, N
            WRITE( NOUT, FMT = 99977 ) ( B(I,J), J = 1, M )
   20     CONTINUE
        ELSE
          WRITE( NOUT, FMT = 99992 )
        END IF
        IF( VEC(6) ) THEN
          WRITE( NOUT,FMT = 99991 )
          DO 30  I = 1, P
            WRITE( NOUT, FMT = 99977 ) ( C(I,J), J = 1, N )
   30     CONTINUE
        ELSE
          WRITE( NOUT, FMT = 99990 )
        END IF
        IF( .NOT.VEC(5) ) THEN
          WRITE( NOUT, FMT = 99989 )
          IF( .NOT.BPAR(2) ) THEN
            ISYMM = ( N * ( N + 1 ) ) / 2
            CALL DCOPY( ISYMM, R, 1, DWORK, 1 )
            IF( BPAR(3) ) THEN
              CALL MA02DD( 'Unpack', 'Upper', N, R, LDR, DWORK )
            ELSE
              CALL MA02DD( 'Unpack', 'Lower', N, R, LDR, DWORK )
            END IF
          END IF
          DO 40  I = 1, N
            WRITE( NOUT, FMT = 99977 ) ( R(I,J), J = 1, N )
   40     CONTINUE
        ELSE
          WRITE( NOUT, FMT = 99988 )
        END IF
        IF( .NOT.VEC(6) ) THEN
          IF( .NOT.BPAR(5) ) THEN
            ISYMM = ( N * ( N + 1 ) ) / 2
            CALL DCOPY( ISYMM, Q, 1, DWORK, 1 )
            IF( BPAR(6) ) THEN
              CALL MA02DD( 'Unpack', 'Upper', N, Q, LDQ, DWORK )
            ELSE
              CALL MA02DD( 'Unpack', 'Lower', N, Q, LDQ, DWORK )
            END IF
          END IF
          WRITE( NOUT, FMT = 99987 )
          DO 50  I = 1, N
            WRITE( NOUT, FMT = 99977 ) ( Q(I,J), J = 1, N )
   50     CONTINUE
        ELSE
          WRITE( NOUT, FMT = 99986 )
        END IF
        IF( VEC(6) ) THEN
          IF( .NOT.BPAR(5) ) THEN
            ISYMM = ( P * ( P + 1 ) ) / 2
            CALL DCOPY( ISYMM, Q, 1, DWORK, 1 )
            IF( BPAR(6) ) THEN
              CALL MA02DD( 'Unpack', 'Upper', P, Q, LDQ, DWORK )
            ELSE
              CALL MA02DD( 'Unpack', 'Lower', P, Q, LDQ, DWORK )
            END IF
          END IF
          WRITE( NOUT, FMT = 99985 )
          DO 60  I = 1, P
            WRITE( NOUT, FMT = 99977 ) ( Q(I,J), J = 1, P )
   60     CONTINUE
        ELSE
          WRITE( NOUT, FMT = 99984 )
        END IF
        IF( VEC(5) ) THEN
          IF( .NOT.BPAR(2) ) THEN
            ISYMM = ( M * ( M + 1 ) ) / 2
            CALL DCOPY( ISYMM, R, 1, DWORK, 1 )
            IF( BPAR(3) ) THEN
              CALL MA02DD( 'Unpack', 'Upper', M, R, LDR, DWORK )
            ELSE
              CALL MA02DD( 'Unpack', 'Lower', M, R, LDR, DWORK )
            END IF
          END IF
          WRITE( NOUT, FMT = 99983 )
          DO 70  I = 1, M
            WRITE( NOUT, FMT = 99977 ) ( R(I,J), J = 1, M )
   70     CONTINUE
        ELSE
          WRITE( NOUT, FMT = 99982 )
        END IF
        IF( VEC(9) ) THEN
          WRITE( NOUT, FMT = 99981 )
          DO 80  I = 1, N
            WRITE( NOUT, FMT = 99977 ) ( S(I,J), J = 1, M )
   80     CONTINUE
        ELSE
          WRITE( NOUT, FMT = 99980 )
        END IF
        IF( VEC(10) ) THEN
          WRITE( NOUT, FMT = 99979 )
          DO 90  I = 1, N
            WRITE( NOUT, FMT = 99977 ) ( X(I,J), J = 1, N )
   90     CONTINUE
        ELSE
          WRITE( NOUT, FMT = 99978 )
        END IF
      END IF
      STOP
*
99999 FORMAT (' BB02AD EXAMPLE PROGRAM RESULTS', /1X)
99998 FORMAT (' INFO on exit from BB02AD = ', I3)
99997 FORMAT (/' Order of matrix A:              N  = ', I3)
99996 FORMAT (' Number of columns in matrix B:  M  = ', I3)
99995 FORMAT (' Number of rows in matrix C:     P  = ', I3)
99994 FORMAT (' A  = ')
99993 FORMAT (' B  = ')
99992 FORMAT (' B is not provided.')
99991 FORMAT (' C  = ')
99990 FORMAT (' C is not provided.')
99989 FORMAT (' G  = ')
99988 FORMAT (' G is not provided.')
99987 FORMAT (' Q  = ')
99986 FORMAT (' Q is not provided.')
99985 FORMAT (' Q0  = ')
99984 FORMAT (' Q0 is not provided.')
99983 FORMAT (' R  = ')
99982 FORMAT (' R is not provided.')
99981 FORMAT (' S  = ')
99980 FORMAT (' S is not provided.')
99979 FORMAT (' X  = ')
99978 FORMAT (' X is not provided.')
99977 FORMAT (20(1X,F8.4))
*
      END
Program Data
BB02AD EXAMPLE PROGRAM DATA
N
2 3
7
.T. .T. .T. .F. .F. .T. .T.
1
.1234
0
Program Results
 BB02AD EXAMPLE PROGRAM RESULTS

 increasingly bad scaled system as eps -> oo                           

 Order of matrix A:              N  =   2
 Number of columns in matrix B:  M  =   1
 Number of rows in matrix C:     P  =   2
 A  = 
   0.0000   0.1234
   0.0000   0.0000
 B  = 
   0.0000
   1.0000
 C is not provided.
 G is not provided.
 Q  = 
   1.0000   0.0000
   0.0000   1.0000
 Q0 is not provided.
 R  = 
   1.0000
 S  = 
   0.0000
   0.0000
 X  = 
   1.0000   0.0000
   0.0000   1.0152

Return to index