Purpose
To extract from the system pencil ( A-lambda*E B ) S(lambda) = ( ) ( C D ) a regular pencil Af-lambda*Ef which has the finite Smith zeros of S(lambda) as generalized eigenvalues. The routine also computes the orders of the infinite Smith zeros and determines the singular and infinite Kronecker structure of system pencil, i.e., the right and left Kronecker indices, and the multiplicities of infinite eigenvalues.Specification
SUBROUTINE AG08BD( EQUIL, L, N, M, P, A, LDA, E, LDE, B, LDB, $ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ, NKROR, $ NINFE, NKROL, INFZ, KRONR, INFE, KRONL, $ TOL, IWORK, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER EQUIL INTEGER DINFZ, INFO, L, LDA, LDB, LDC, LDD, LDE, LDWORK, $ M, N, NFZ, NINFE, NIZ, NKROL, NKROR, NRANK, P DOUBLE PRECISION TOL C .. Array Arguments .. INTEGER INFE(*), INFZ(*), IWORK(*), KRONL(*), KRONR(*) DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), $ DWORK(*), E(LDE,*)Arguments
Mode Parameters
EQUIL CHARACTER*1 Specifies whether the user wishes to balance the system matrix as follows: = 'S': Perform balancing (scaling); = 'N': Do not perform balancing.Input/Output Parameters
L (input) INTEGER The number of rows of matrices A, B, and E. L >= 0. N (input) INTEGER The number of columns of matrices A, E, and C. N >= 0. M (input) INTEGER The number of columns of matrix B. M >= 0. P (input) INTEGER The number of rows of matrix C. P >= 0. A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading L-by-N part of this array must contain the state dynamics matrix A of the system. On exit, the leading NFZ-by-NFZ part of this array contains the matrix Af of the reduced pencil. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,L). E (input/output) DOUBLE PRECISION array, dimension (LDE,N) On entry, the leading L-by-N part of this array must contain the descriptor matrix E of the system. On exit, the leading NFZ-by-NFZ part of this array contains the matrix Ef of the reduced pencil. LDE INTEGER The leading dimension of array E. LDE >= MAX(1,L). B (input/output) DOUBLE PRECISION array, dimension (LDB,M) On entry, the leading L-by-M part of this array must contain the input/state matrix B of the system. On exit, this matrix does not contain useful information. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,L) if M > 0; LDB >= 1 if M = 0. C (input/output) DOUBLE PRECISION array, dimension (LDC,N) On entry, the leading P-by-N part of this array must contain the state/output matrix C of the system. On exit, this matrix does not contain useful information. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,P). D (input) DOUBLE PRECISION array, dimension (LDD,M) The leading P-by-M part of this array must contain the direct transmission matrix D of the system. LDD INTEGER The leading dimension of array D. LDD >= MAX(1,P). NFZ (output) INTEGER The number of finite zeros. NRANK (output) INTEGER The normal rank of the system pencil. NIZ (output) INTEGER The number of infinite zeros. DINFZ (output) INTEGER The maximal multiplicity of infinite Smith zeros. NKROR (output) INTEGER The number of right Kronecker indices. NINFE (output) INTEGER The number of elementary infinite blocks. NKROL (output) INTEGER The number of left Kronecker indices. INFZ (output) INTEGER array, dimension (N+1) The leading DINFZ elements of INFZ contain information on the infinite elementary divisors as follows: the system has INFZ(i) infinite elementary divisors of degree i in the Smith form, where i = 1,2,...,DINFZ. KRONR (output) INTEGER array, dimension (N+M+1) The leading NKROR elements of this array contain the right Kronecker (column) indices. INFE (output) INTEGER array, dimension (1+MIN(L+P,N+M)) The leading NINFE elements of INFE contain the multiplicities of infinite eigenvalues. KRONL (output) INTEGER array, dimension (L+P+1) The leading NKROL elements of this array contain the left Kronecker (row) indices.Tolerances
TOL DOUBLE PRECISION A tolerance used in rank decisions to determine the effective rank, which is defined as the order of the largest leading (or trailing) triangular submatrix in the QR (or RQ) factorization with column (or row) pivoting whose estimated condition number is less than 1/TOL. If the user sets TOL <= 0, then default tolerances are used instead, as follows: TOLDEF = L*N*EPS in TG01FD (to determine the rank of E) and TOLDEF = (L+P)*(N+M)*EPS in the rest, where EPS is the machine precision (see LAPACK Library routine DLAMCH). TOL < 1.Workspace
IWORK INTEGER array, dimension (N+max(1,M)) On output, IWORK(1) contains the normal rank of the transfer function matrix. DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= max( 4*(L+N), LDW ), if EQUIL = 'S', LDWORK >= LDW, if EQUIL = 'N', where LDW = max(L+P,M+N)*(M+N) + max(1,5*max(L+P,M+N)). For optimum performance LDWORK should be larger. If LDWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the DWORK array, returns this value as the first entry of the DWORK array, and no error message related to LDWORK is issued by XERBLA.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value.Method
The routine extracts from the system matrix of a descriptor system (A-lambda*E,B,C,D) a regular pencil Af-lambda*Ef which has the finite zeros of the system as generalized eigenvalues. The procedure has the following main computational steps: (a) construct the (L+P)-by-(N+M) system pencil S(lambda) = ( B A )-lambda*( 0 E ); ( D C ) ( 0 0 ) (b) reduce S(lambda) to S1(lambda) with the same finite zeros and right Kronecker structure but with E upper triangular and nonsingular; (c) reduce S1(lambda) to S2(lambda) with the same finite zeros and right Kronecker structure but with D of full row rank; (d) reduce S2(lambda) to S3(lambda) with the same finite zeros and with D square invertible; (e) perform a unitary transformation on the columns of S3(lambda) = (A-lambda*E B) in order to reduce it to ( C D) (Af-lambda*Ef X), with Y and Ef square invertible; ( 0 Y) (f) compute the right and left Kronecker indices of the system matrix, which together with the multiplicities of the finite and infinite eigenvalues constitute the complete set of structural invariants under strict equivalence transformations of a linear system.References
[1] P. Misra, P. Van Dooren and A. Varga. Computation of structural invariants of generalized state-space systems. Automatica, 30, pp. 1921-1936, 1994.Numerical Aspects
The algorithm is backward stable (see [1]).Further Comments
In order to compute the finite Smith zeros of the system explicitly, a call to this routine may be followed by a call to the LAPACK Library routines DGEGV or DGGEV.Example
Program Text
* AG08BD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER LMAX, MMAX, NMAX, PMAX PARAMETER ( LMAX = 20, MMAX = 20, NMAX = 20, PMAX = 20 ) INTEGER LDA, LDAEMX, LDB, LDC, LDD, LDE, LDQ, LDZ PARAMETER ( LDA = LMAX, LDB = LMAX, LDC = PMAX, $ LDD = PMAX, LDE = LMAX, LDQ = 1, LDZ = 1, $ LDAEMX = MAX( PMAX + LMAX, NMAX + MMAX ) ) INTEGER LDWORK PARAMETER ( LDWORK = MAX( 4*( LMAX + NMAX ), 8*NMAX, $ LDAEMX*LDAEMX + $ MAX( 1, 5*LDAEMX ) ) ) * .. Local Scalars .. DOUBLE PRECISION TOL INTEGER DINFZ, I, INFO, J, L, M, N, NFZ, NINFE, NIZ, $ NKROL, NKROR, NRANK, P CHARACTER*1 EQUIL * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), ALFI(NMAX), ALFR(NMAX), $ ASAVE(LDA,NMAX), B(LDB,MMAX), BETA(NMAX), $ BSAVE(LDB,MMAX), C(LDC,NMAX), CSAVE(LDC,NMAX), $ D(LDD,MMAX), DSAVE(LDD,MMAX), DWORK(LDWORK), $ E(LDE,NMAX), ESAVE(LDE,NMAX), Q(LDQ,1), Z(LDZ,1) INTEGER INFE(1+LMAX+PMAX), INFZ(NMAX+1), $ IWORK(NMAX+MMAX), KRONL(LMAX+PMAX+1), $ KRONR(NMAX+MMAX+1) * .. External Subroutines .. EXTERNAL AG08BD, DGEGV, DLACPY * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) L, N, M, P, TOL, EQUIL IF( ( L.LT.0 .OR. L.GT.LMAX ) .OR. ( N.LT.0 .OR. N.GT.NMAX ) ) $ THEN WRITE ( NOUT, FMT = 99972 ) L, N ELSE IF( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99971 ) M ELSE IF( P.LT.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99970 ) P ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,L ) READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,L ) READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,L ) READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P ) CALL DLACPY( 'F', L, N, A, LDA, ASAVE, LDA ) CALL DLACPY( 'F', L, N, E, LDE, ESAVE, LDE ) CALL DLACPY( 'F', L, M, B, LDB, BSAVE, LDB ) CALL DLACPY( 'F', P, N, C, LDC, CSAVE, LDC ) CALL DLACPY( 'F', P, M, D, LDD, DSAVE, LDD ) * Compute poles (call the routine with M = 0, P = 0). CALL AG08BD( EQUIL, L, N, 0, 0, A, LDA, E, LDE, B, LDB, $ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ, $ NKROR, NINFE, NKROL, INFZ, KRONR, INFE, $ KRONL, TOL, IWORK, DWORK, LDWORK, INFO ) * IF( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99968 ) NIZ DO 10 I = 1, DINFZ WRITE ( NOUT, FMT = 99967 ) INFZ(I), I 10 CONTINUE WRITE ( NOUT, FMT = 99962 ) NINFE IF( NINFE.GT.0 ) WRITE ( NOUT, FMT = 99958 ) $ ( INFE(I), I = 1,NINFE ) IF( NFZ.EQ.0 ) THEN WRITE ( NOUT, FMT = 99965 ) ELSE WRITE ( NOUT, FMT = 99966 ) WRITE ( NOUT, FMT = 99990 ) DO 20 I = 1, NFZ WRITE ( NOUT, FMT = 99989 ) $ ( A(I,J), J = 1,NFZ ) 20 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 30 I = 1, NFZ WRITE ( NOUT, FMT = 99989 ) $ ( E(I,J), J = 1,NFZ ) 30 CONTINUE CALL DGEGV( 'No vectors', 'No vectors', NFZ, A, $ LDA, E, LDE, ALFR, ALFI, BETA, Q, $ LDQ, Z, LDZ, DWORK, LDWORK, INFO ) * IF( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99997 ) INFO ELSE WRITE ( NOUT, FMT = 99996 ) DO 40 I = 1, NFZ IF( ALFI(I).EQ.ZERO ) THEN WRITE ( NOUT, FMT = 99980 ) $ ALFR(I)/BETA(I) ELSE WRITE ( NOUT, FMT = 99979 ) $ ALFR(I)/BETA(I), $ ALFI(I)/BETA(I) END IF 40 CONTINUE END IF END IF END IF CALL DLACPY( 'F', L, N, ASAVE, LDA, A, LDA ) CALL DLACPY( 'F', L, N, ESAVE, LDE, E, LDE ) * Check the observability and compute the ordered set of * the observability indices (call the routine with M = 0). CALL AG08BD( EQUIL, L, N, 0, P, A, LDA, E, LDE, B, LDB, $ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ, $ NKROR, NINFE, NKROL, INFZ, KRONR, INFE, $ KRONL, TOL, IWORK, DWORK, LDWORK, INFO ) * IF( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99964 ) NIZ DO 50 I = 1, DINFZ WRITE ( NOUT, FMT = 99967 ) INFZ(I), I 50 CONTINUE WRITE ( NOUT, FMT = 99962 ) NINFE IF( NINFE.GT.0 ) WRITE ( NOUT, FMT = 99960 ) $ ( INFE(I), I = 1,NINFE ) WRITE ( NOUT, FMT = 99994 ) ( KRONL(I), I = 1,NKROL ) IF( NFZ+NINFE.EQ.0 ) WRITE ( NOUT, FMT = 99993 ) IF( NFZ.EQ.0 ) THEN WRITE ( NOUT, FMT = 99957 ) ELSE WRITE ( NOUT, FMT = 99991 ) WRITE ( NOUT, FMT = 99990 ) DO 60 I = 1, NFZ WRITE ( NOUT, FMT = 99989 ) $ ( A(I,J), J = 1,NFZ ) 60 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 70 I = 1, NFZ WRITE ( NOUT, FMT = 99989 ) $ ( E(I,J), J = 1,NFZ ) 70 CONTINUE CALL DGEGV( 'No vectors', 'No vectors', NFZ, A, $ LDA, E, LDE, ALFR, ALFI, BETA, Q, $ LDQ, Z, LDZ, DWORK, LDWORK, INFO ) * IF( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99997 ) INFO ELSE WRITE ( NOUT, FMT = 99996 ) DO 80 I = 1, NFZ IF( ALFI(I).EQ.ZERO ) THEN WRITE ( NOUT, FMT = 99980 ) $ ALFR(I)/BETA(I) ELSE WRITE ( NOUT, FMT = 99979 ) $ ALFR(I)/BETA(I), $ ALFI(I)/BETA(I) END IF 80 CONTINUE END IF END IF END IF CALL DLACPY( 'F', L, N, ASAVE, LDA, A, LDA ) CALL DLACPY( 'F', L, N, ESAVE, LDE, E, LDE ) CALL DLACPY( 'F', P, N, CSAVE, LDC, C, LDC ) * Check the controllability and compute the ordered set of * the controllability indices (call the routine with P = 0) CALL AG08BD( EQUIL, L, N, M, 0, A, LDA, E, LDE, B, LDB, $ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ, $ NKROR, NINFE, NKROL, INFZ, KRONR, INFE, $ KRONL, TOL, IWORK, DWORK, LDWORK, INFO ) * IF( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99963 ) NIZ DO 90 I = 1, DINFZ WRITE ( NOUT, FMT = 99967 ) INFZ(I), I 90 CONTINUE WRITE ( NOUT, FMT = 99962 ) NINFE IF( NINFE.GT.0 ) WRITE ( NOUT, FMT = 99959 ) $ ( INFE(I), I = 1,NINFE ) WRITE ( NOUT, FMT = 99988 ) ( KRONR(I), I = 1,NKROR ) IF( NFZ+NINFE.EQ.0 ) WRITE ( NOUT, FMT = 99987 ) IF( NFZ.EQ.0 ) THEN WRITE ( NOUT, FMT = 99956 ) ELSE WRITE ( NOUT, FMT = 99985 ) WRITE ( NOUT, FMT = 99990 ) DO 100 I = 1, NFZ WRITE ( NOUT, FMT = 99989 ) $ ( A(I,J), J = 1,NFZ ) 100 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 110 I = 1, NFZ WRITE ( NOUT, FMT = 99989 ) $ ( E(I,J), J = 1,NFZ ) 110 CONTINUE CALL DGEGV( 'No vectors', 'No vectors', NFZ, A, $ LDA, E, LDE, ALFR, ALFI, BETA, Q, $ LDQ, Z, LDZ, DWORK, LDWORK, INFO ) * IF( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99997 ) INFO ELSE WRITE ( NOUT, FMT = 99982 ) DO 120 I = 1, NFZ IF( ALFI(I).EQ.ZERO ) THEN WRITE ( NOUT, FMT = 99980 ) $ ALFR(I)/BETA(I) ELSE WRITE ( NOUT, FMT = 99979 ) $ ALFR(I)/BETA(I), $ ALFI(I)/BETA(I) END IF 120 CONTINUE END IF END IF END IF CALL DLACPY( 'F', L, N, ASAVE, LDA, A, LDA ) CALL DLACPY( 'F', L, N, ESAVE, LDE, E, LDE ) CALL DLACPY( 'F', L, M, BSAVE, LDB, B, LDB ) CALL DLACPY( 'F', P, N, CSAVE, LDC, C, LDC ) CALL DLACPY( 'F', P, M, DSAVE, LDD, D, LDD ) * Compute the structural invariants of the given system. CALL AG08BD( EQUIL, L, N, M, P, A, LDA, E, LDE, B, LDB, $ C, LDC, D, LDD, NFZ, NRANK, NIZ, DINFZ, $ NKROR, NINFE, NKROL, INFZ, KRONR, INFE, $ KRONL, TOL, IWORK, DWORK, LDWORK, INFO ) * IF( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE IF( L.EQ.N ) THEN WRITE ( NOUT, FMT = 99969 ) NRANK - N ELSE WRITE ( NOUT, FMT = 99955 ) NRANK END IF WRITE ( NOUT, FMT = 99984 ) NFZ IF( NFZ.GT.0 ) THEN * Compute the finite zeros of the given system. * Workspace: need 8*NFZ. WRITE ( NOUT, FMT = 99983 ) WRITE ( NOUT, FMT = 99990 ) DO 130 I = 1, NFZ WRITE ( NOUT, FMT = 99989 ) $ ( A(I,J), J = 1,NFZ ) 130 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 140 I = 1, NFZ WRITE ( NOUT, FMT = 99989 ) $ ( E(I,J), J = 1,NFZ ) 140 CONTINUE CALL DGEGV( 'No vectors', 'No vectors', NFZ, A, $ LDA, E, LDE, ALFR, ALFI, BETA, Q, $ LDQ, Z, LDZ, DWORK, LDWORK, INFO ) * IF( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99997 ) INFO ELSE WRITE ( NOUT, FMT = 99981 ) DO 150 I = 1, NFZ IF( ALFI(I).EQ.ZERO ) THEN WRITE ( NOUT, FMT = 99980 ) $ ALFR(I)/BETA(I) ELSE WRITE ( NOUT, FMT = 99979 ) $ ALFR(I)/BETA(I), $ ALFI(I)/BETA(I) END IF 150 CONTINUE END IF END IF WRITE ( NOUT, FMT = 99978 ) NIZ DO 160 I = 1, DINFZ WRITE ( NOUT, FMT = 99977 ) INFZ(I), I 160 CONTINUE WRITE ( NOUT, FMT = 99962 ) NINFE IF( NINFE.GT.0 ) WRITE ( NOUT, FMT = 99961 ) $ ( INFE(I), I = 1,NINFE ) WRITE ( NOUT, FMT = 99976 ) NKROR IF( NKROR.GT.0 ) WRITE ( NOUT, FMT = 99975 ) $ ( KRONR(I), I = 1,NKROR ) WRITE ( NOUT, FMT = 99974 ) NKROL IF( NKROL.GT.0 ) WRITE ( NOUT, FMT = 99973 ) $ ( KRONL(I), I = 1,NKROL ) END IF END IF END IF END IF * STOP * 99999 FORMAT (' AG08BD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from AG08BD = ',I2) 99997 FORMAT (' INFO on exit from DGEGV = ',I2) 99996 FORMAT (/'Unobservable finite eigenvalues'/ $ ' real part imag part ') 99995 FORMAT (/' The matrix Ef is ') 99994 FORMAT (/' The left Kronecker indices of [A-lambda*E;C] are ', $ /(20(I3,2X))) 99993 FORMAT (/' The system (A-lambda*E,C) is completely observable ') 99991 FORMAT (/' The finite output decoupling zeros are the eigenvalues' $ ,' of the pair (Af,Ef). ') 99990 FORMAT (/' The matrix Af is ') 99989 FORMAT (20(1X,F8.4)) 99988 FORMAT (/' The right Kronecker indices of [A-lambda*E,B] are ', $ /( 20(I3,2X) ) ) 99987 FORMAT (/' The system (A-lambda*E,B) is completely controllable ') 99985 FORMAT (/' The input decoupling zeros are the eigenvalues of the', $ ' pair (Af,Ef). ') 99984 FORMAT (/' The number of finite zeros = ',I3) 99983 FORMAT (/' The finite zeros are the eigenvalues ', $ 'of the pair (Af,Ef)') 99982 FORMAT (/'Uncontrollable finite eigenvalues'/ $ ' real part imag part ') 99981 FORMAT (/'Finite zeros'/' real part imag part ') 99980 FORMAT (1X,F9.4) 99979 FORMAT (1X,F9.4,6X,F9.4) 99978 FORMAT (//' The number of infinite zeros = ',I3) 99977 FORMAT ( I4,' infinite zero(s) of order ',I3) 99976 FORMAT (/' The number of right Kronecker indices = ',I3) 99975 FORMAT (/' Right Kronecker indices of [A-lambda*E,B;C,D]' $ ,' are ', /(20(I3,2X))) 99974 FORMAT (/' The number of left Kronecker indices = ',I3) 99973 FORMAT (/' The left Kronecker indices of [A-lambda*E,B;C,D]' $ ,' are ', /(20(I3,2X))) 99972 FORMAT (/' L or N is out of range.',/' L = ', I5, ' N = ',I5) 99971 FORMAT (/' M is out of range.',/' M = ',I5) 99970 FORMAT (/' P is out of range.',/' P = ',I5) 99969 FORMAT (/' Normal rank of transfer function matrix = ',I3) 99968 FORMAT (//' The number of infinite poles = ',I3) 99967 FORMAT ( I4,' infinite pole(s) of order ',I3) 99966 FORMAT (/' The finite poles are the eigenvalues', $ ' of the pair (Af,Ef). ') 99965 FORMAT (/' The system has no finite poles ') 99964 FORMAT (//' The number of unobservable infinite poles = ',I3) 99963 FORMAT (//' The number of uncontrollable infinite poles = ',I3) 99962 FORMAT (/' The number of infinite Kronecker blocks = ',I3) 99961 FORMAT (/' Multiplicities of infinite eigenvalues of ' $ ,'[A-lambda*E,B;C,D] are ', /(20(I3,2X))) 99960 FORMAT (/' Multiplicities of infinite eigenvalues of ' $ ,'[A-lambda*E;C] are ', /(20(I3,2X))) 99959 FORMAT (/' Multiplicities of infinite eigenvalues of ' $ ,'[A-lambda*E,B] are ', /(20(I3,2X))) 99958 FORMAT (/' Multiplicities of infinite eigenvalues of A-lambda*E' $ ,' are ', /(20(I3,2X))) 99957 FORMAT (/' The system (A-lambda*E,C) has no finite output', $ ' decoupling zeros ') 99956 FORMAT (/' The system (A-lambda*E,B) has no finite input', $ ' decoupling zeros ') 99955 FORMAT (/' Normal rank of system pencil = ',I3) ENDProgram Data
AG08BD EXAMPLE PROGRAM DATA 9 9 3 3 1.e-7 N 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 1 1 0 3 4 0 0 2 0 1 0 0 4 0 0 2 0 0 0 1 0 -1 4 0 -2 2 1 2 -2 0 -1 -2 0 0 0Program Results
AG08BD EXAMPLE PROGRAM RESULTS The number of infinite poles = 6 0 infinite pole(s) of order 1 3 infinite pole(s) of order 2 The number of infinite Kronecker blocks = 3 Multiplicities of infinite eigenvalues of A-lambda*E are 3 3 3 The system has no finite poles The number of unobservable infinite poles = 4 0 infinite pole(s) of order 1 2 infinite pole(s) of order 2 The number of infinite Kronecker blocks = 3 Multiplicities of infinite eigenvalues of [A-lambda*E;C] are 1 3 3 The left Kronecker indices of [A-lambda*E;C] are 0 1 1 The system (A-lambda*E,C) has no finite output decoupling zeros The number of uncontrollable infinite poles = 0 The number of infinite Kronecker blocks = 3 Multiplicities of infinite eigenvalues of [A-lambda*E,B] are 1 1 1 The right Kronecker indices of [A-lambda*E,B] are 2 2 2 The system (A-lambda*E,B) has no finite input decoupling zeros Normal rank of transfer function matrix = 2 The number of finite zeros = 1 The finite zeros are the eigenvalues of the pair (Af,Ef) The matrix Af is 0.7705 The matrix Ef is 0.7705 Finite zeros real part imag part 1.0000 The number of infinite zeros = 2 0 infinite zero(s) of order 1 1 infinite zero(s) of order 2 The number of infinite Kronecker blocks = 5 Multiplicities of infinite eigenvalues of [A-lambda*E,B;C,D] are 1 1 1 1 3 The number of right Kronecker indices = 1 Right Kronecker indices of [A-lambda*E,B;C,D] are 2 The number of left Kronecker indices = 1 The left Kronecker indices of [A-lambda*E,B;C,D] are 1