AB09FD

Balance & Truncate model reduction for unstable systems in conjunction with coprime factorization

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute a reduced order model (Ar,Br,Cr) for an original
  state-space representation (A,B,C) by using either the square-root
  or the balancing-free square-root Balance & Truncate (B & T)
  model reduction method in conjunction with stable coprime
  factorization techniques.

Specification
      SUBROUTINE AB09FD( DICO, JOBCF, FACT, JOBMR, EQUIL, ORDSEL, N, M,
     $                   P, NR, ALPHA, A, LDA, B, LDB, C, LDC, NQ, HSV,
     $                   TOL1, TOL2, IWORK, DWORK, LDWORK, IWARN, INFO )
C     .. Scalar Arguments ..
      CHARACTER         DICO, EQUIL, FACT, JOBCF, JOBMR, ORDSEL
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDWORK, M, N, NQ,
     $                  NR, P
      DOUBLE PRECISION  ALPHA, TOL1, TOL2
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*)

Arguments

Mode Parameters

  DICO    CHARACTER*1
          Specifies the type of the original system as follows:
          = 'C':  continuous-time system;
          = 'D':  discrete-time system.

  JOBCF   CHARACTER*1
          Specifies whether left or right coprime factorization is
          to be used as follows:
          = 'L':  use left coprime factorization;
          = 'R':  use right coprime factorization.

  FACT    CHARACTER*1
          Specifies the type of coprime factorization to be computed
          as follows:
          = 'S':  compute a coprime factorization with prescribed
                  stability degree ALPHA;
          = 'I':  compute a coprime factorization with inner
                  denominator.

  JOBMR   CHARACTER*1
          Specifies the model reduction approach to be used
          as follows:
          = 'B':  use the square-root Balance & Truncate method;
          = 'N':  use the balancing-free square-root
                  Balance & Truncate method.

  EQUIL   CHARACTER*1
          Specifies whether the user wishes to preliminarily
          equilibrate the triplet (A,B,C) as follows:
          = 'S':  perform equilibration (scaling);
          = 'N':  do not perform equilibration.

  ORDSEL  CHARACTER*1
          Specifies the order selection method as follows:
          = 'F':  the resulting order NR is fixed;
          = 'A':  the resulting order NR is automatically determined
                  on basis of the given tolerance TOL1.

Input/Output Parameters
  N       (input) INTEGER
          The order of the original state-space representation, i.e.
          the order of the matrix A.  N >= 0.

  M       (input) INTEGER
          The number of system inputs.  M >= 0.

  P       (input) INTEGER
          The number of system outputs.  P >= 0.

  NR      (input/output) INTEGER
          On entry with ORDSEL = 'F', NR is the desired order of the
          resulting reduced order system.  0 <= NR <= N.
          On exit, if INFO = 0, NR is the order of the resulting
          reduced order model. NR is set as follows:
          if ORDSEL = 'F', NR is equal to MIN(NR,NQ,NMIN), where NR
          is the desired order on entry, NQ is the order of the
          computed coprime factorization of the given system, and
          NMIN is the order of a minimal realization of the extended
          system (see METHOD); NMIN is determined as the number of
          Hankel singular values greater than NQ*EPS*HNORM(Ge),
          where EPS is the machine precision (see LAPACK Library
          Routine DLAMCH) and HNORM(Ge) is the Hankel norm of the
          extended system (computed in HSV(1));
          if ORDSEL = 'A', NR is equal to the number of Hankel
          singular values greater than MAX(TOL1,NQ*EPS*HNORM(Ge)).

  ALPHA   (input) DOUBLE PRECISION
          If FACT = 'S', the desired stability degree for the
          factors of the coprime factorization (see SLICOT Library
          routines SB08ED/SB08FD).
          ALPHA < 0 for a continuous-time system (DICO = 'C'), and
          0 <= ALPHA < 1 for a discrete-time system (DICO = 'D').
          If FACT = 'I', ALPHA is not used.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the original state dynamics matrix A.
          On exit, if INFO = 0, the leading NR-by-NR part of this
          array contains the state dynamics matrix Ar of the reduced
          order system.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the original input/state matrix B.
          On exit, if INFO = 0, the leading NR-by-M part of this
          array contains the input/state matrix Br of the reduced
          order system.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the original state/output matrix C.
          On exit, if INFO = 0, the leading P-by-NR part of this
          array contains the state/output matrix Cr of the reduced
          order system.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,P).

  NQ      (output) INTEGER
          The order of the computed extended system Ge (see METHOD).

  HSV     (output) DOUBLE PRECISION array, dimension (N)
          If INFO = 0, it contains the NQ Hankel singular values of
          the extended system Ge ordered decreasingly (see METHOD).

Tolerances
  TOL1    DOUBLE PRECISION
          If ORDSEL = 'A', TOL1 contains the tolerance for
          determining the order of reduced extended system.
          For model reduction, the recommended value is
          TOL1 = c*HNORM(Ge), where c is a constant in the
          interval [0.00001,0.001], and HNORM(Ge) is the
          Hankel-norm of the extended system (computed in HSV(1)).
          The value TOL1 = NQ*EPS*HNORM(Ge) is used by default if
          TOL1 <= 0 on entry, where EPS is the machine precision
          (see LAPACK Library Routine DLAMCH).
          If ORDSEL = 'F', the value of TOL1 is ignored.

  TOL2    DOUBLE PRECISION
          The absolute tolerance level below which the elements of
          B or C are considered zero (used for controllability or
          observability tests).
          If the user sets TOL2 <= 0, then an implicitly computed,
          default tolerance TOLDEF is used:
          TOLDEF = N*EPS*NORM(C'), if JOBCF = 'L', or
          TOLDEF = N*EPS*NORM(B),  if JOBCF = 'R',
          where EPS is the machine precision, and NORM(.) denotes
          the 1-norm of a matrix.

Workspace
  IWORK   INTEGER array, dimension (LIWORK)
          LIWORK = PM,        if JOBMR = 'B',
          LIWORK = MAX(N,PM), if JOBMR = 'N', where
          PM = P, if JOBCF = 'L',
          PM = M, if JOBCF = 'R'.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK >= MAX(1,LW1) if JOBCF = 'L' and FACT = 'S',
          LDWORK >= MAX(1,LW2) if JOBCF = 'L' and FACT = 'I',
          LDWORK >= MAX(1,LW3) if JOBCF = 'R' and FACT = 'S',
          LDWORK >= MAX(1,LW4) if JOBCF = 'R' and FACT = 'I', where
          LW1 = N*(2*MAX(M,P) + P) + MAX(M,P)*(MAX(M,P) + P) +
                MAX( N*P+MAX(N*(N+5), 5*P, 4*M), LWR ),
          LW2 = N*(2*MAX(M,P) + P) + MAX(M,P)*(MAX(M,P) + P) +
                MAX( N*P+MAX(N*(N+5), P*(P+2), 4*P, 4*M), LWR ),
          LW3 = (N+M)*(M+P) + MAX( 5*M, 4*P, LWR ),
          LW4 = (N+M)*(M+P) + MAX( M*(M+2), 4*M, 4*P, LWR ), and
          LWR = 2*N*N + N*(MAX(N,M+P)+5) + N*(N+1)/2.
          For optimum performance LDWORK should be larger.

Warning Indicator
  IWARN   INTEGER
          = 0:  no warning;
          = 10*K+I:
            I = 1:  with ORDSEL = 'F', the selected order NR is
                    greater than the order of the computed coprime
                    factorization of the given system. In this case,
                    the resulting NR is set automatically to a value
                    corresponding to the order of a minimal
                    realization of the system;
            K > 0:  K violations of the numerical stability
                    condition occured when computing the coprime
                    factorization using pole assignment (see SLICOT
                    Library routines SB08CD/SB08ED, SB08DD/SB08FD).

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the reduction of A to a real Schur form failed;
          = 2:  a failure was detected during the ordering of the
                real Schur form of A, or in the iterative process
                for reordering the eigenvalues of Z'*(A + H*C)*Z
                (or Z'*(A + B*F)*Z) along the diagonal; see SLICOT
                Library routines SB08CD/SB08ED (or SB08DD/SB08FD);
          = 3:  the matrix A has an observable or controllable
                eigenvalue on the imaginary axis if DICO = 'C' or
                on the unit circle if DICO = 'D';
          = 4:  the computation of Hankel singular values failed.

Method
  Let be the linear system

       d[x(t)] = Ax(t) + Bu(t)
       y(t)    = Cx(t)                               (1)

  where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
  for a discrete-time system, and let G be the corresponding
  transfer-function matrix. The subroutine AB09FD determines
  the matrices of a reduced order system

       d[z(t)] = Ar*z(t) + Br*u(t)
       yr(t)   = Cr*z(t)                             (2)

  with the transfer-function matrix Gr, by using the
  balanced-truncation model reduction method in conjunction with
  a left coprime factorization (LCF) or a right coprime
  factorization (RCF) technique:

  1. Compute the appropriate stable coprime factorization of G:
                  -1                   -1
             G = R  *Q (LCF) or G = Q*R   (RCF).

  2. Perform the model reduction algorithm on the extended system
                                        ( Q )
             Ge = ( Q R ) (LCF) or Ge = ( R )  (RCF)

     to obtain a reduced extended system with reduced factors
                                            ( Qr )
             Ger = ( Qr Rr ) (LCF) or Ger = ( Rr )  (RCF).

  3. Recover the reduced system from the reduced factors as
                    -1                       -1
             Gr = Rr  *Qr (LCF) or Gr = Qr*Rr   (RCF).

  The approximation error for the extended system satisfies

     HSV(NR) <= INFNORM(Ge-Ger) <= 2*[HSV(NR+1) + ... + HSV(NQ)],

  where INFNORM(G) is the infinity-norm of G.

  If JOBMR = 'B', the square-root Balance & Truncate method of [1]
  is used for model reduction.
  If JOBMR = 'N', the balancing-free square-root version of the
  Balance & Truncate method [2] is used for model reduction.

  If FACT = 'S', the stable coprime factorization with prescribed
  stability degree ALPHA is computed by using the algorithm of [3].
  If FACT = 'I', the stable coprime factorization with inner
  denominator is computed by using the algorithm of [4].

References
  [1] Tombs M.S. and Postlethwaite I.
      Truncated balanced realization of stable, non-minimal
      state-space systems.
      Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

  [2] Varga A.
      Efficient minimal realization procedure based on balancing.
      Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
      A. El Moudui, P. Borne, S. G. Tzafestas (Eds.), Vol. 2,
      pp. 42-46, 1991.

  [3] Varga A.
      Coprime factors model reduction method based on square-root
      balancing-free techniques.
      System Analysis, Modelling and Simulation, Vol. 11,
      pp. 303-311, 1993.

  [4] Varga A.
      A Schur method for computing coprime factorizations with
      inner denominators and applications in model reduction.
      Proc. ACC'93, San Francisco, CA, pp. 2130-2131, 1993.

Numerical Aspects
  The implemented methods rely on accuracy enhancing square-root or
  balancing-free square-root techniques.
                                      3
  The algorithms require less than 30N  floating point operations.

Further Comments
  None
Example

Program Text

*     AB09FD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = MAX( NMAX, MMAX, PMAX ) )
*     The formula below uses that NMAX = MMAX = PMAX.
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 10*NMAX*NMAX + 5*NMAX )
*     .. Local Scalars ..
      DOUBLE PRECISION ALPHA, TOL1, TOL2
      INTEGER          I, INFO, IWARN, J, M, N, NQ, NR, P
      CHARACTER*1      DICO, EQUIL, FACT, JOBCF, JOBMR, ORDSEL
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), HSV(NMAX)
      INTEGER          IWORK(LIWORK)
*     .. External Subroutines ..
      EXTERNAL         AB09FD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, NR, ALPHA, TOL1, TOL2,
     $                      DICO, JOBCF, FACT, JOBMR, EQUIL, ORDSEL
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1, N ), I = 1, N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99989 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99988 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1, N ), I = 1, P )
*              Find a reduced ssr for (A,B,C).
               CALL AB09FD( DICO, JOBCF, FACT, JOBMR, EQUIL, ORDSEL,
     $                      N, M, P, NR, ALPHA, A, LDA, B, LDB, C, LDC,
     $                      NQ, HSV, TOL1, TOL2, IWORK, DWORK, LDWORK,
     $                      IWARN, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 ) NR
                  WRITE ( NOUT, FMT = 99987 )
                  WRITE ( NOUT, FMT = 99995 ) ( HSV(J), J = 1, NQ )
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, NR
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1, NR )
   20             CONTINUE
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99993 )
                  DO 40 I = 1, NR
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1, M )
   40             CONTINUE
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99992 )
                  DO 60 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1, NR )
   60             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB09FD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB09FD = ',I2)
99997 FORMAT (' The order of reduced model = ',I2)
99996 FORMAT (/' The reduced state dynamics matrix Ar is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The reduced input/state matrix Br is ')
99992 FORMAT (/' The reduced state/output matrix Cr is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (/' The Hankel singular values of coprime factors are')
      END
Program Data
 AB08FD EXAMPLE PROGRAM DATA (Continuous system)
  7  2  3  0 -1.e-1  .1 1.E-10 C L I B S A
 -0.04165  0.0000  4.9200   0.4920  0.0000   0.0000  0.0000
 -5.2100  -12.500  0.0000   0.0000  0.0000   0.0000  0.0000
  0.0000   3.3300 -3.3300   0.0000  0.0000   0.0000  0.0000
  0.5450   0.0000  0.0000   0.0000  0.0545   0.0000  0.0000
  0.0000   0.0000  0.0000  -0.49200 0.004165 0.0000  4.9200
  0.0000   0.0000  0.0000   0.0000  0.5210  -12.500  0.0000
  0.0000   0.0000  0.0000   0.0000  0.0000   3.3300 -3.3300
  0.0000   0.0000
  12.500   0.0000
  0.0000   0.0000
  0.0000   0.0000
  0.0000   0.0000
  0.0000   12.500
  0.0000   0.0000
  1.0000   0.0000  0.0000   0.0000  0.0000  0.0000  0.0000
  0.0000   0.0000  0.0000   1.0000  0.0000  0.0000  0.0000
  0.0000   0.0000  0.0000   0.0000  1.0000  0.0000  0.0000
Program Results
 AB09FD EXAMPLE PROGRAM RESULTS

 The order of reduced model =  5

 The Hankel singular values of coprime factors are
  13.6047   9.4106   1.7684   0.7456   0.6891   0.0241   0.0230

 The reduced state dynamics matrix Ar is 
   0.0520  -0.1491   0.0037  -0.0232   0.0168
   0.2340   0.2618   0.0010  -0.0153  -0.0318
   0.1197   0.0075  -0.5752   2.0119  -0.7779
   0.1571  -0.2019  -2.1282  -2.1192  -0.3618
   0.0368  -0.4810   0.8395  -0.2790  -2.8796

 The reduced input/state matrix Br is 
   1.0454   0.5860
  -0.0489  -1.9194
  -1.4282   0.0541
  -1.6144  -0.7533
   0.5916  -1.9242

 The reduced state/output matrix Cr is 
   0.4368   0.1122  -1.2917   1.5888  -0.6354
   1.1170   0.3963   0.6115   0.1249  -0.0859
   0.0756  -1.8904   0.0144   0.7964   1.9085

Return to index