AB09DD

Computation of a reduced order model using singular perturbation approximation formulas

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute a reduced order model by using singular perturbation
  approximation formulas.

Specification
      SUBROUTINE AB09DD( DICO, N, M, P, NR, A, LDA, B, LDB, C, LDC,
     $                   D, LDD, RCOND, IWORK, DWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER         DICO
      INTEGER           INFO, LDA, LDB, LDC, LDD, M, N, NR, P
      DOUBLE PRECISION  RCOND
C     .. Array Arguments ..
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), DWORK(*)
      INTEGER           IWORK(*)

Arguments

Mode Parameters

  DICO    CHARACTER*1
          Specifies the type of the original system as follows:
          = 'C':  continuous-time system;
          = 'D':  discrete-time system.

Input/Output Parameters
  N       (input) INTEGER
          The dimension of the state vector, i.e. the order of the
          matrix A; also the number of rows of matrix B and the
          number of columns of the matrix C.  N >= 0.

  M       (input) INTEGER
          The dimension of input vector, i.e. the number of columns
          of matrices B and D.  M >= 0.

  P       (input) INTEGER
          The dimension of output vector, i.e. the number of rows of
          matrices C and D.  P >= 0.

  NR      (input) INTEGER
          The order of the reduced order system.  N >= NR >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state dynamics matrix of the original system.
          On exit, the leading NR-by-NR part of this array contains
          the state dynamics matrix Ar of the reduced order system.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the input/state matrix of the original system.
          On exit, the leading NR-by-M part of this array contains
          the input/state matrix Br of the reduced order system.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the state/output matrix of the original system.
          On exit, the leading P-by-NR part of this array contains
          the state/output matrix Cr of the reduced order system.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,P).

  D       (input/output) DOUBLE PRECISION array, dimension (LDD,M)
          On entry, the leading P-by-M part of this array must
          contain the input/output matrix of the original system.
          On exit, the leading P-by-M part of this array contains
          the input/output matrix Dr of the reduced order system.
          If NR = 0 and the given system is stable, then D contains
          the steady state gain of the system.

  LDD     INTEGER
          The leading dimension of array D.  LDD >= MAX(1,P).

  RCOND   (output) DOUBLE PRECISION
          The reciprocal condition number of the matrix A22-g*I
          (see METHOD).

Workspace
  IWORK   INTEGER array, dimension (2*(N-NR))

  DWORK   DOUBLE PRECISION array, dimension (4*(N-NR))

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1: if the matrix A22-g*I (see METHOD) is numerically
               singular.

Method
  Given the system (A,B,C,D), partition the system matrices as

         ( A11 A12 )        ( B1 )
     A = (         ) ,  B = (    ) ,  C = ( C1  C2 ),
         ( A21 A22 )        ( B2 )

  where A11 is NR-by-NR, B1 is NR-by-M, C1 is P-by-NR, and the other
  submatrices have appropriate dimensions.

  The matrices of the reduced order system (Ar,Br,Cr,Dr) are
  computed according to the following residualization formulas:
                             -1                               -1
     Ar = A11 + A12*(g*I-A22)  *A21 ,  Br = B1 + A12*(g*I-A22)  *B2
                           -1                               -1
     Cr = C1 + C2*(g*I-A22)  *A21   ,  Dr = D + C2*(g*I-A22)  *B2

  where g = 0 if DICO = 'C' and g = 1 if DICO = 'D'.

Further Comments
  None
Example

Program Text

*     AB09DD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDD
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDD = PMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = 2*NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 4*NMAX )
*     .. Local Scalars ..
      DOUBLE PRECISION RCOND
      INTEGER          I, INFO, J, M, N, NR, P
      CHARACTER*1      DICO
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 D(LDD,MMAX), DWORK(LDWORK)
      INTEGER          IWORK(LIWORK)
*     .. External Subroutines ..
      EXTERNAL         AB09DD
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, NR, DICO
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99989 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99988 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
               READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
*              Find a reduced ssr for (A,B,C).
               CALL AB09DD( DICO, N, M, P, NR, A, LDA, B, LDB, C, LDC,
     $                      D, LDD, RCOND, IWORK, DWORK, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 ) RCOND
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, NR
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NR )
   20             CONTINUE
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99993 )
                  DO 40 I = 1, NR
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   40             CONTINUE
                  IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99992 )
                  DO 60 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,NR )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99991 )
                  DO 70 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1,M )
   70             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB09DD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB09DD = ',I2)
99997 FORMAT (' The computed reciprocal condition number = ',1PD12.5)
99996 FORMAT (/' The reduced state dynamics matrix Ar is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The reduced input/state matrix Br is ')
99992 FORMAT (/' The reduced state/output matrix Cr is ')
99991 FORMAT (/' The reduced input/output matrix Dr is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
      END
Program Data
 AB09DD EXAMPLE PROGRAM DATA  (Continuous system)
  7     2     3     5      C
  -0.04165    4.9200   -4.9200         0         0         0         0
         0   -3.3300         0         0         0    3.3300         0
    0.5450         0         0   -0.5450         0         0         0
         0         0    4.9200  -0.04165    4.9200         0         0
         0         0         0         0   -3.3300         0    3.3300
   -5.2100         0         0         0         0  -12.5000         0
         0         0         0   -5.2100         0         0  -12.5000
         0         0   
         0         0   
         0         0   
         0         0   
         0         0   
   12.5000         0   
         0   12.5000   
     1     0     0     0     0     0     0
     0     0     1     0     0     0     0
     0     0     0     1     0     0     0
     0     0     
     0     0     
     0     0     
Program Results
 AB09DD EXAMPLE PROGRAM RESULTS

 The computed reciprocal condition number =  1.00000D+00

 The reduced state dynamics matrix Ar is 
  -0.0416   4.9200  -4.9200   0.0000   0.0000
  -1.3879  -3.3300   0.0000   0.0000   0.0000
   0.5450   0.0000   0.0000  -0.5450   0.0000
   0.0000   0.0000   4.9200  -0.0416   4.9200
   0.0000   0.0000   0.0000  -1.3879  -3.3300

 The reduced input/state matrix Br is 
   0.0000   0.0000
   3.3300   0.0000
   0.0000   0.0000
   0.0000   0.0000
   0.0000   3.3300

 The reduced state/output matrix Cr is 
   1.0000   0.0000   0.0000   0.0000   0.0000
   0.0000   0.0000   1.0000   0.0000   0.0000
   0.0000   0.0000   0.0000   1.0000   0.0000

 The reduced input/output matrix Dr is 
   0.0000   0.0000
   0.0000   0.0000
   0.0000   0.0000

Return to index