Purpose
To compute a reduced order model (Ar,Br,Cr,Dr) for a stable original state-space representation (A,B,C,D) by using either the square-root or the balancing-free square-root Singular Perturbation Approximation (SPA) model reduction method.Specification
SUBROUTINE AB09BD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, A, LDA, $ B, LDB, C, LDC, D, LDD, HSV, TOL1, TOL2, IWORK, $ DWORK, LDWORK, IWARN, INFO ) C .. Scalar Arguments .. CHARACTER DICO, EQUIL, JOB, ORDSEL INTEGER INFO, IWARN, LDA, LDB, LDC, LDD, LDWORK, $ M, N, NR, P DOUBLE PRECISION TOL1, TOL2 C .. Array Arguments .. INTEGER IWORK(*) DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*), $ DWORK(*), HSV(*)Arguments
Mode Parameters
DICO CHARACTER*1 Specifies the type of the original system as follows: = 'C': continuous-time system; = 'D': discrete-time system. JOB CHARACTER*1 Specifies the model reduction approach to be used as follows: = 'B': use the square-root SPA method; = 'N': use the balancing-free square-root SPA method. EQUIL CHARACTER*1 Specifies whether the user wishes to preliminarily equilibrate the triplet (A,B,C) as follows: = 'S': perform equilibration (scaling); = 'N': do not perform equilibration. ORDSEL CHARACTER*1 Specifies the order selection method as follows: = 'F': the resulting order NR is fixed; = 'A': the resulting order NR is automatically determined on basis of the given tolerance TOL1.Input/Output Parameters
N (input) INTEGER The order of the original state-space representation, i.e. the order of the matrix A. N >= 0. M (input) INTEGER The number of system inputs. M >= 0. P (input) INTEGER The number of system outputs. P >= 0. NR (input/output) INTEGER On entry with ORDSEL = 'F', NR is the desired order of the resulting reduced order system. 0 <= NR <= N. On exit, if INFO = 0, NR is the order of the resulting reduced order model. NR is set as follows: if ORDSEL = 'F', NR is equal to MIN(NR,NMIN), where NR is the desired order on entry and NMIN is the order of a minimal realization of the given system; NMIN is determined as the number of Hankel singular values greater than N*EPS*HNORM(A,B,C), where EPS is the machine precision (see LAPACK Library Routine DLAMCH) and HNORM(A,B,C) is the Hankel norm of the system (computed in HSV(1)); if ORDSEL = 'A', NR is equal to the number of Hankel singular values greater than MAX(TOL1,N*EPS*HNORM(A,B,C)). A (input/output) DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading N-by-N part of this array must contain the state dynamics matrix A. On exit, if INFO = 0, the leading NR-by-NR part of this array contains the state dynamics matrix Ar of the reduced order system. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,N). B (input/output) DOUBLE PRECISION array, dimension (LDB,M) On entry, the leading N-by-M part of this array must contain the original input/state matrix B. On exit, if INFO = 0, the leading NR-by-M part of this array contains the input/state matrix Br of the reduced order system. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,N). C (input/output) DOUBLE PRECISION array, dimension (LDC,N) On entry, the leading P-by-N part of this array must contain the original state/output matrix C. On exit, if INFO = 0, the leading P-by-NR part of this array contains the state/output matrix Cr of the reduced order system. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,P). D (input/output) DOUBLE PRECISION array, dimension (LDD,M) On entry, the leading P-by-M part of this array must contain the original input/output matrix D. On exit, if INFO = 0, the leading P-by-M part of this array contains the input/output matrix Dr of the reduced order system. LDD INTEGER The leading dimension of array D. LDD >= MAX(1,P). HSV (output) DOUBLE PRECISION array, dimension (N) If INFO = 0, it contains the Hankel singular values of the original system ordered decreasingly. HSV(1) is the Hankel norm of the system.Tolerances
TOL1 DOUBLE PRECISION If ORDSEL = 'A', TOL1 contains the tolerance for determining the order of reduced system. For model reduction, the recommended value is TOL1 = c*HNORM(A,B,C), where c is a constant in the interval [0.00001,0.001], and HNORM(A,B,C) is the Hankel-norm of the given system (computed in HSV(1)). For computing a minimal realization, the recommended value is TOL1 = N*EPS*HNORM(A,B,C), where EPS is the machine precision (see LAPACK Library Routine DLAMCH). This value is used by default if TOL1 <= 0 on entry. If ORDSEL = 'F', the value of TOL1 is ignored. TOL2 DOUBLE PRECISION The tolerance for determining the order of a minimal realization of the given system. The recommended value is TOL2 = N*EPS*HNORM(A,B,C). This value is used by default if TOL2 <= 0 on entry. If TOL2 > 0, then TOL2 <= TOL1.Workspace
IWORK INTEGER array, dimension (MAX(1,2*N)) On exit with INFO = 0, IWORK(1) contains the order of the minimal realization of the system. DWORK DOUBLE PRECISION array, dimension (LDWORK) On exit, if INFO = 0, DWORK(1) returns the optimal value of LDWORK. LDWORK INTEGER The length of the array DWORK. LDWORK >= MAX(1,N*(2*N+MAX(N,M,P)+5)+N*(N+1)/2). For optimum performance LDWORK should be larger.Warning Indicator
IWARN INTEGER = 0: no warning; = 1: with ORDSEL = 'F', the selected order NR is greater than the order of a minimal realization of the given system. In this case, the resulting NR is set automatically to a value corresponding to the order of a minimal realization of the system.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: the reduction of A to the real Schur form failed; = 2: the state matrix A is not stable (if DICO = 'C') or not convergent (if DICO = 'D'); = 3: the computation of Hankel singular values failed.Method
Let be the stable linear system d[x(t)] = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) (1) where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1) for a discrete-time system. The subroutine AB09BD determines for the given system (1), the matrices of a reduced order system d[z(t)] = Ar*z(t) + Br*u(t) yr(t) = Cr*z(t) + Dr*u(t) (2) such that HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)], where G and Gr are transfer-function matrices of the systems (A,B,C,D) and (Ar,Br,Cr,Dr), respectively, and INFNORM(G) is the infinity-norm of G. If JOB = 'B', the balancing-based square-root SPA method of [1] is used and the resulting model is balanced. If JOB = 'N', the balancing-free square-root SPA method of [2] is used. By setting TOL1 = TOL2, the routine can be used to compute Balance & Truncate approximations.References
[1] Liu Y. and Anderson B.D.O. Singular Perturbation Approximation of Balanced Systems, Int. J. Control, Vol. 50, pp. 1379-1405, 1989. [2] Varga A. Balancing-free square-root algorithm for computing singular perturbation approximations. Proc. 30-th IEEE CDC, Brighton, Dec. 11-13, 1991, Vol. 2, pp. 1062-1065.Numerical Aspects
The implemented methods rely on accuracy enhancing square-root or balancing-free square-root techniques. 3 The algorithms require less than 30N floating point operations.Further Comments
NoneExample
Program Text
* AB09BD EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX, PMAX PARAMETER ( NMAX = 20, MMAX = 20, PMAX = 20 ) INTEGER LDA, LDB, LDC, LDD PARAMETER ( LDA = NMAX, LDB = NMAX, LDC = PMAX, $ LDD = PMAX ) INTEGER LIWORK PARAMETER ( LIWORK = 2*NMAX ) INTEGER LDWORK PARAMETER ( LDWORK = NMAX*( 2*NMAX + 5 + $ MAX( NMAX, MMAX, PMAX ) ) + $ ( NMAX*( NMAX + 1 ) )/2 ) * .. Local Scalars .. DOUBLE PRECISION TOL1, TOL2 INTEGER I, INFO, IWARN, J, M, N, NR, P CHARACTER*1 DICO, EQUIL, JOB, ORDSEL * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX), $ D(LDD,MMAX), DWORK(LDWORK), HSV(NMAX) INTEGER IWORK(LIWORK) * .. External Subroutines .. EXTERNAL AB09BD * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, P, NR, TOL1, TOL2, DICO, JOB, EQUIL, $ ORDSEL IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99990 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99989 ) M ELSE READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N ) IF ( P.LT.0 .OR. P.GT.PMAX ) THEN WRITE ( NOUT, FMT = 99988 ) P ELSE READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P ) READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P ) * Find a reduced ssr for (A,B,C). CALL AB09BD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, $ A, LDA, B, LDB, C, LDC, D, LDD, HSV, TOL1, $ TOL2, IWORK, DWORK, LDWORK, IWARN, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) NR WRITE ( NOUT, FMT = 99987 ) WRITE ( NOUT, FMT = 99995 ) ( HSV(J), J = 1,N ) IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99996 ) DO 20 I = 1, NR WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NR ) 20 CONTINUE IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99993 ) DO 40 I = 1, NR WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M ) 40 CONTINUE IF( NR.GT.0 ) WRITE ( NOUT, FMT = 99992 ) DO 60 I = 1, P WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,NR ) 60 CONTINUE WRITE ( NOUT, FMT = 99991 ) DO 70 I = 1, P WRITE ( NOUT, FMT = 99995 ) ( D(I,J), J = 1,M ) 70 CONTINUE END IF END IF END IF END IF STOP * 99999 FORMAT (' AB09BD EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from AB09BD = ',I2) 99997 FORMAT (' The order of reduced model = ',I2) 99996 FORMAT (/' The reduced state dynamics matrix Ar is ') 99995 FORMAT (20(1X,F8.4)) 99993 FORMAT (/' The reduced input/state matrix Br is ') 99992 FORMAT (/' The reduced state/output matrix Cr is ') 99991 FORMAT (/' The reduced input/output matrix Dr is ') 99990 FORMAT (/' N is out of range.',/' N = ',I5) 99989 FORMAT (/' M is out of range.',/' M = ',I5) 99988 FORMAT (/' P is out of range.',/' P = ',I5) 99987 FORMAT (/' The Hankel singular values are') ENDProgram Data
AB09BD EXAMPLE PROGRAM DATA (Continuous system) 7 2 3 0 1.E-1 1.E-14 C N N A -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 0.0000 0.0000 12.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12.500 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000Program Results
AB09BD EXAMPLE PROGRAM RESULTS The order of reduced model = 5 The Hankel singular values are 2.5139 2.0846 1.9178 0.7666 0.5473 0.0253 0.0246 The reduced state dynamics matrix Ar is 1.3960 5.1248 0.0000 0.0000 4.4331 -4.1411 -3.8605 0.0000 0.0000 -0.6738 0.0000 0.0000 0.5847 1.9230 0.0000 0.0000 0.0000 -4.3823 -3.2922 0.0000 1.3261 1.7851 0.0000 0.0000 -0.2249 The reduced input/state matrix Br is -0.2901 0.2901 -3.4004 3.4004 -0.6379 -0.6379 -3.9315 -3.9315 1.9813 -1.9813 The reduced state/output matrix Cr is -0.6570 0.2053 -0.6416 0.2526 -0.0364 0.1094 0.4875 0.0000 0.0000 0.8641 0.6570 -0.2053 -0.6416 0.2526 0.0364 The reduced input/output matrix Dr is 0.0498 -0.0007 0.0010 -0.0010 -0.0007 0.0498