AB09AD

Balance & Truncate model reduction for stable systems

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute a reduced order model (Ar,Br,Cr) for a stable original
  state-space representation (A,B,C) by using either the square-root
  or the balancing-free square-root Balance & Truncate (B & T)
  model reduction method.

Specification
      SUBROUTINE AB09AD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR, A, LDA,
     $                   B, LDB, C, LDC, HSV, TOL, IWORK, DWORK, LDWORK,
     $                   IWARN, INFO )
C     .. Scalar Arguments ..
      CHARACTER         DICO, EQUIL, JOB, ORDSEL
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDWORK, M, N, NR, P
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*), HSV(*)

Arguments

Mode Parameters

  DICO    CHARACTER*1
          Specifies the type of the original system as follows:
          = 'C':  continuous-time system;
          = 'D':  discrete-time system.

  JOB     CHARACTER*1
          Specifies the model reduction approach to be used
          as follows:
          = 'B':  use the square-root Balance & Truncate method;
          = 'N':  use the balancing-free square-root
                  Balance & Truncate method.

  EQUIL   CHARACTER*1
          Specifies whether the user wishes to preliminarily
          equilibrate the triplet (A,B,C) as follows:
          = 'S':  perform equilibration (scaling);
          = 'N':  do not perform equilibration.

  ORDSEL  CHARACTER*1
          Specifies the order selection method as follows:
          = 'F':  the resulting order NR is fixed;
          = 'A':  the resulting order NR is automatically determined
                  on basis of the given tolerance TOL.

Input/Output Parameters
  N       (input) INTEGER
          The order of the original state-space representation, i.e.
          the order of the matrix A.  N >= 0.

  M       (input) INTEGER
          The number of system inputs.  M >= 0.

  P       (input) INTEGER
          The number of system outputs.  P >= 0.

  NR      (input/output) INTEGER
          On entry with ORDSEL = 'F', NR is the desired order of the
          resulting reduced order system.  0 <= NR <= N.
          On exit, if INFO = 0, NR is the order of the resulting
          reduced order model. NR is set as follows:
          if ORDSEL = 'F', NR is equal to MIN(NR,NMIN), where NR
          is the desired order on entry and NMIN is the order of a
          minimal realization of the given system; NMIN is
          determined as the number of Hankel singular values greater
          than N*EPS*HNORM(A,B,C), where EPS is the machine
          precision (see LAPACK Library Routine DLAMCH) and
          HNORM(A,B,C) is the Hankel norm of the system (computed
          in HSV(1));
          if ORDSEL = 'A', NR is equal to the number of Hankel
          singular values greater than MAX(TOL,N*EPS*HNORM(A,B,C)).

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the state dynamics matrix A.
          On exit, if INFO = 0, the leading NR-by-NR part of this
          array contains the state dynamics matrix Ar of the reduced
          order system.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the original input/state matrix B.
          On exit, if INFO = 0, the leading NR-by-M part of this
          array contains the input/state matrix Br of the reduced
          order system.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the original state/output matrix C.
          On exit, if INFO = 0, the leading P-by-NR part of this
          array contains the state/output matrix Cr of the reduced
          order system.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,P).

  HSV     (output) DOUBLE PRECISION array, dimension (N)
          If INFO = 0, it contains the Hankel singular values of
          the original system ordered decreasingly. HSV(1) is the
          Hankel norm of the system.

Tolerances
  TOL     DOUBLE PRECISION
          If ORDSEL = 'A', TOL contains the tolerance for
          determining the order of reduced system.
          For model reduction, the recommended value is
          TOL = c*HNORM(A,B,C), where c is a constant in the
          interval [0.00001,0.001], and HNORM(A,B,C) is the
          Hankel-norm of the given system (computed in HSV(1)).
          For computing a minimal realization, the recommended
          value is TOL = N*EPS*HNORM(A,B,C), where EPS is the
          machine precision (see LAPACK Library Routine DLAMCH).
          This value is used by default if TOL <= 0 on entry.
          If ORDSEL = 'F', the value of TOL is ignored.

Workspace
  IWORK   INTEGER array, dimension (LIWORK)
          LIWORK = 0, if JOB = 'B';
          LIWORK = N, if JOB = 'N'.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK >= MAX(1,N*(2*N+MAX(N,M,P)+5)+N*(N+1)/2).
          For optimum performance LDWORK should be larger.

Warning Indicator
  IWARN   INTEGER
          = 0:  no warning;
          = 1:  with ORDSEL = 'F', the selected order NR is greater
                than the order of a minimal realization of the
                given system. In this case, the resulting NR is
                set automatically to a value corresponding to the
                order of a minimal realization of the system.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the reduction of A to the real Schur form failed;
          = 2:  the state matrix A is not stable (if DICO = 'C')
                or not convergent (if DICO = 'D');
          = 3:  the computation of Hankel singular values failed.

Method
  Let be the stable linear system

       d[x(t)] = Ax(t) + Bu(t)
       y(t)    = Cx(t)                               (1)

  where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
  for a discrete-time system. The subroutine AB09AD determines for
  the given system (1), the matrices of a reduced order system

       d[z(t)] = Ar*z(t) + Br*u(t)
       yr(t)   = Cr*z(t)                             (2)

  such that

        HSV(NR) <= INFNORM(G-Gr) <= 2*[HSV(NR+1) + ... + HSV(N)],

  where G and Gr are transfer-function matrices of the systems
  (A,B,C) and (Ar,Br,Cr), respectively, and INFNORM(G) is the
  infinity-norm of G.

  If JOB = 'B', the square-root Balance & Truncate method of [1]
  is used and, for DICO = 'C', the resulting model is balanced.
  By setting TOL <= 0, the routine can be used to compute balanced
  minimal state-space realizations of stable systems.

  If JOB = 'N', the balancing-free square-root version of the
  Balance & Truncate method [2] is used.
  By setting TOL <= 0, the routine can be used to compute minimal
  state-space realizations of stable systems.

References
  [1] Tombs M.S. and Postlethwaite I.
      Truncated balanced realization of stable, non-minimal
      state-space systems.
      Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

  [2] Varga A.
      Efficient minimal realization procedure based on balancing.
      Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
      A. El Moudui, P. Borne, S. G. Tzafestas (Eds.),
      Vol. 2, pp. 42-46.

Numerical Aspects
  The implemented methods rely on accuracy enhancing square-root or
  balancing-free square-root techniques.
                                      3
  The algorithms require less than 30N  floating point operations.

Further Comments
  None
Example

Program Text

*     AB09AD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX )
      INTEGER          LIWORK
      PARAMETER        ( LIWORK = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = NMAX*( 2*NMAX + 5 +
     $                            MAX( NMAX, MMAX, PMAX ) ) +
     $                          ( NMAX*( NMAX + 1 ) )/2 )
*     .. Local Scalars ..
      DOUBLE PRECISION TOL
      INTEGER          I, INFO, IWARN, J, M, N, NR, P
      CHARACTER*1      DICO, EQUIL, JOB, ORDSEL
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), HSV(NMAX)
      INTEGER          IWORK(LIWORK)
*     .. External Subroutines ..
      EXTERNAL         AB09AD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, NR, TOL, DICO, JOB, EQUIL, ORDSEL
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99989 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99988 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
*              Find a reduced ssr for (A,B,C).
               CALL AB09AD( DICO, JOB, EQUIL, ORDSEL, N, M, P, NR,
     $                      A, LDA, B, LDB, C, LDC, HSV, TOL, IWORK,
     $                      DWORK, LDWORK, IWARN, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 ) NR
                  WRITE ( NOUT, FMT = 99987 )
                  WRITE ( NOUT, FMT = 99995 ) ( HSV(J), J = 1,N )
                  WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, NR
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NR )
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99993 )
                  DO 40 I = 1, NR
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   40             CONTINUE
                  WRITE ( NOUT, FMT = 99992 )
                  DO 60 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,NR )
   60             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' AB09AD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from AB09AD = ',I2)
99997 FORMAT (' The order of reduced model = ',I2)
99996 FORMAT (/' The reduced state dynamics matrix Ar is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The reduced input/state matrix Br is ')
99992 FORMAT (/' The reduced state/output matrix Cr is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (/' The Hankel singular values HSV are')
      END
Program Data
 AB09AD EXAMPLE PROGRAM DATA (Continuous system)
  7     2     3     0   1.E-1      C     N     N     A
 -0.04165  0.0000  4.9200  -4.9200  0.0000  0.0000  0.0000
 -5.2100  -12.500  0.0000   0.0000  0.0000  0.0000  0.0000
  0.0000   3.3300 -3.3300   0.0000  0.0000  0.0000  0.0000
  0.5450   0.0000  0.0000   0.0000 -0.5450  0.0000  0.0000
  0.0000   0.0000  0.0000   4.9200 -0.04165 0.0000  4.9200
  0.0000   0.0000  0.0000   0.0000 -5.2100 -12.500  0.0000
  0.0000   0.0000  0.0000   0.0000  0.0000  3.3300 -3.3300
  0.0000   0.0000
  12.500   0.0000
  0.0000   0.0000
  0.0000   0.0000
  0.0000   0.0000
  0.0000   12.500
  0.0000   0.0000
  1.0000   0.0000  0.0000   0.0000  0.0000  0.0000  0.0000
  0.0000   0.0000  0.0000   1.0000  0.0000  0.0000  0.0000
  0.0000   0.0000  0.0000   0.0000  1.0000  0.0000  0.0000
Program Results
 AB09AD EXAMPLE PROGRAM RESULTS

 The order of reduced model =  5

 The Hankel singular values HSV are
   2.5139   2.0846   1.9178   0.7666   0.5473   0.0253   0.0246

 The reduced state dynamics matrix Ar is 
   1.3451   5.0399   0.0000   0.0000   4.5315
  -4.0214  -3.6604   0.0000   0.0000  -0.9056
   0.0000   0.0000   0.5124   1.7910   0.0000
   0.0000   0.0000  -4.2167  -2.9900   0.0000
   1.2402   1.6416   0.0000   0.0000  -0.0586

 The reduced input/state matrix Br is 
  -0.3857   0.3857
  -3.1753   3.1753
  -0.7447  -0.7447
  -3.6872  -3.6872
   1.8197  -1.8197

 The reduced state/output matrix Cr is 
  -0.6704   0.1828  -0.6582   0.2222  -0.0104
   0.1089   0.4867   0.0000   0.0000   0.8651
   0.6704  -0.1828  -0.6582   0.2222   0.0104

Return to index