Purpose
To obtain the state-space model (A,B,C,D) for the feedback inter-connection of two systems, each given in state-space form.Specification
SUBROUTINE AB05ND( OVER, N1, M1, P1, N2, ALPHA, A1, LDA1, B1, $ LDB1, C1, LDC1, D1, LDD1, A2, LDA2, B2, LDB2, $ C2, LDC2, D2, LDD2, N, A, LDA, B, LDB, C, LDC, $ D, LDD, IWORK, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER OVER INTEGER INFO, LDA, LDA1, LDA2, LDB, LDB1, LDB2, LDC, $ LDC1, LDC2, LDD, LDD1, LDD2, LDWORK, M1, N, N1, $ N2, P1 DOUBLE PRECISION ALPHA C .. Array Arguments .. INTEGER IWORK(*) DOUBLE PRECISION A(LDA,*), A1(LDA1,*), A2(LDA2,*), B(LDB,*), $ B1(LDB1,*), B2(LDB2,*), C(LDC,*), C1(LDC1,*), $ C2(LDC2,*), D(LDD,*), D1(LDD1,*), D2(LDD2,*), $ DWORK(*)Arguments
Mode Parameters
OVER CHARACTER*1 Indicates whether the user wishes to overlap pairs of arrays, as follows: = 'N': Do not overlap; = 'O': Overlap pairs of arrays: A1 and A, B1 and B, C1 and C, and D1 and D, i.e. the same name is effectively used for each pair (for all pairs) in the routine call. In this case, setting LDA1 = LDA, LDB1 = LDB, LDC1 = LDC, and LDD1 = LDD will give maximum efficiency.Input/Output Parameters
N1 (input) INTEGER The number of state variables in the first system, i.e. the order of the matrix A1. N1 >= 0. M1 (input) INTEGER The number of input variables for the first system and the number of output variables from the second system. M1 >= 0. P1 (input) INTEGER The number of output variables from the first system and the number of input variables for the second system. P1 >= 0. N2 (input) INTEGER The number of state variables in the second system, i.e. the order of the matrix A2. N2 >= 0. ALPHA (input) DOUBLE PRECISION A coefficient multiplying the transfer-function matrix (or the output equation) of the second system. ALPHA = +1 corresponds to positive feedback, and ALPHA = -1 corresponds to negative feedback. A1 (input) DOUBLE PRECISION array, dimension (LDA1,N1) The leading N1-by-N1 part of this array must contain the state transition matrix A1 for the first system. LDA1 INTEGER The leading dimension of array A1. LDA1 >= MAX(1,N1). B1 (input) DOUBLE PRECISION array, dimension (LDB1,M1) The leading N1-by-M1 part of this array must contain the input/state matrix B1 for the first system. LDB1 INTEGER The leading dimension of array B1. LDB1 >= MAX(1,N1). C1 (input) DOUBLE PRECISION array, dimension (LDC1,N1) The leading P1-by-N1 part of this array must contain the state/output matrix C1 for the first system. LDC1 INTEGER The leading dimension of array C1. LDC1 >= MAX(1,P1) if N1 > 0. LDC1 >= 1 if N1 = 0. D1 (input) DOUBLE PRECISION array, dimension (LDD1,M1) The leading P1-by-M1 part of this array must contain the input/output matrix D1 for the first system. LDD1 INTEGER The leading dimension of array D1. LDD1 >= MAX(1,P1). A2 (input) DOUBLE PRECISION array, dimension (LDA2,N2) The leading N2-by-N2 part of this array must contain the state transition matrix A2 for the second system. LDA2 INTEGER The leading dimension of array A2. LDA2 >= MAX(1,N2). B2 (input) DOUBLE PRECISION array, dimension (LDB2,P1) The leading N2-by-P1 part of this array must contain the input/state matrix B2 for the second system. LDB2 INTEGER The leading dimension of array B2. LDB2 >= MAX(1,N2). C2 (input) DOUBLE PRECISION array, dimension (LDC2,N2) The leading M1-by-N2 part of this array must contain the state/output matrix C2 for the second system. LDC2 INTEGER The leading dimension of array C2. LDC2 >= MAX(1,M1) if N2 > 0. LDC2 >= 1 if N2 = 0. D2 (input) DOUBLE PRECISION array, dimension (LDD2,P1) The leading M1-by-P1 part of this array must contain the input/output matrix D2 for the second system. LDD2 INTEGER The leading dimension of array D2. LDD2 >= MAX(1,M1). N (output) INTEGER The number of state variables (N1 + N2) in the connected system, i.e. the order of the matrix A, the number of rows of B and the number of columns of C. A (output) DOUBLE PRECISION array, dimension (LDA,N1+N2) The leading N-by-N part of this array contains the state transition matrix A for the connected system. The array A can overlap A1 if OVER = 'O'. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,N1+N2). B (output) DOUBLE PRECISION array, dimension (LDB,M1) The leading N-by-M1 part of this array contains the input/state matrix B for the connected system. The array B can overlap B1 if OVER = 'O'. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,N1+N2). C (output) DOUBLE PRECISION array, dimension (LDC,N1+N2) The leading P1-by-N part of this array contains the state/output matrix C for the connected system. The array C can overlap C1 if OVER = 'O'. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,P1) if N1+N2 > 0. LDC >= 1 if N1+N2 = 0. D (output) DOUBLE PRECISION array, dimension (LDD,M1) The leading P1-by-M1 part of this array contains the input/output matrix D for the connected system. The array D can overlap D1 if OVER = 'O'. LDD INTEGER The leading dimension of array D. LDD >= MAX(1,P1).Workspace
IWORK INTEGER array, dimension (P1) DWORK DOUBLE PRECISION array, dimension (LDWORK) LDWORK INTEGER The length of the array DWORK. If OVER = 'N', LDWORK >= MAX(1, P1*P1, M1*M1, N1*P1), and if OVER = 'O', LDWORK >= MAX(1, N1*P1 + MAX( P1*P1, M1*M1, N1*P1) ), if M1 <= N*N2; LDWORK >= MAX(1, N1*P1 + MAX( P1*P1, M1*(M1+1), N1*P1) ), if M1 > N*N2.Error Indicator
INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, 1 <= i <= P1, the system is not completely controllable. That is, the matrix (I + ALPHA*D1*D2) is exactly singular (the element U(i,i) of the upper triangular factor of LU factorization is exactly zero), possibly due to rounding errors.Method
After feedback inter-connection of the two systems, X1' = A1*X1 + B1*U1 Y1 = C1*X1 + D1*U1 X2' = A2*X2 + B2*U2 Y2 = C2*X2 + D2*U2 (where ' denotes differentiation with respect to time) the following state-space model will be obtained: X' = A*X + B*U Y = C*X + D*U where U = U1 + alpha*Y2, X = ( X1 ), Y = Y1 = U2, ( X2 ) matrix A has the form ( A1 - alpha*B1*E12*D2*C1 - alpha*B1*E12*C2 ), ( B2*E21*C1 A2 - alpha*B2*E21*D1*C2 ) matrix B has the form ( B1*E12 ), ( B2*E21*D1 ) matrix C has the form ( E21*C1 - alpha*E21*D1*C2 ), matrix D has the form ( E21*D1 ), E21 = ( I + alpha*D1*D2 )-INVERSE and E12 = ( I + alpha*D2*D1 )-INVERSE = I - alpha*D2*E21*D1. Taking N1 = 0 and/or N2 = 0 on the routine call will solve the constant plant and/or constant feedback cases.References
NoneNumerical Aspects
NoneFurther Comments
NoneExample
Program Text
* AB05ND EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER N1MAX, N2MAX, NMAX, M1MAX, P1MAX PARAMETER ( N1MAX = 20, N2MAX = 20, NMAX = N1MAX+N2MAX, $ M1MAX = 20, P1MAX = 20 ) INTEGER LDA, LDA1, LDA2, LDB, LDB1, LDB2, LDC, LDC1, $ LDC2, LDD, LDD1, LDD2 PARAMETER ( LDA = NMAX, LDA1 = N1MAX, LDA2 = N2MAX, $ LDB = NMAX, LDB1 = N1MAX, LDB2 = N2MAX, $ LDC = P1MAX, LDC1 = P1MAX, LDC2 = M1MAX, $ LDD = P1MAX, LDD1 = P1MAX, LDD2 = M1MAX ) INTEGER LDWORK PARAMETER ( LDWORK = P1MAX*P1MAX ) DOUBLE PRECISION ONE PARAMETER ( ONE=1.0D0 ) * .. Local Scalars .. CHARACTER*1 OVER INTEGER I, INFO, J, M1, N, N1, N2, P1 DOUBLE PRECISION ALPHA * .. Local Arrays .. INTEGER IWORK(P1MAX) DOUBLE PRECISION A(LDA,NMAX), A1(LDA1,N1MAX), A2(LDA2,N2MAX), $ B(LDB,M1MAX), B1(LDB1,M1MAX), B2(LDB2,P1MAX), $ C(LDC,NMAX), C1(LDC1,N1MAX), C2(LDC2,N2MAX), $ D(LDD,M1MAX), D1(LDD1,M1MAX), D2(LDD2,P1MAX), $ DWORK(LDWORK) * .. External Subroutines .. EXTERNAL AB05ND * .. Executable Statements .. * OVER = 'N' ALPHA = ONE WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N1, M1, P1, N2 IF ( N1.LE.0 .OR. N1.GT.N1MAX ) THEN WRITE ( NOUT, FMT = 99992 ) N1 ELSE READ ( NIN, FMT = * ) ( ( A1(I,J), J = 1,N1 ), I = 1,N1 ) IF ( M1.LE.0 .OR. M1.GT.M1MAX ) THEN WRITE ( NOUT, FMT = 99991 ) M1 ELSE READ ( NIN, FMT = * ) ( ( B1(I,J), I = 1,N1 ), J = 1,M1 ) IF ( P1.LE.0 .OR. P1.GT.P1MAX ) THEN WRITE ( NOUT, FMT = 99990 ) P1 ELSE READ ( NIN, FMT = * ) ( ( C1(I,J), J = 1,N1 ), I = 1,P1 ) READ ( NIN, FMT = * ) ( ( D1(I,J), J = 1,M1 ), I = 1,P1 ) IF ( N2.LE.0 .OR. N2.GT.N2MAX ) THEN WRITE ( NOUT, FMT = 99989 ) N2 ELSE READ ( NIN, FMT = * ) $ ( ( A2(I,J), J = 1,N2 ), I = 1,N2 ) READ ( NIN, FMT = * ) $ ( ( B2(I,J), I = 1,N2 ), J = 1,P1 ) READ ( NIN, FMT = * ) $ ( ( C2(I,J), J = 1,N2 ), I = 1,M1 ) READ ( NIN, FMT = * ) $ ( ( D2(I,J), J = 1,P1 ), I = 1,M1 ) * Find the state-space model (A,B,C,D). CALL AB05ND( OVER, N1, M1, P1, N2, ALPHA, A1, LDA1, $ B1, LDB1, C1, LDC1, D1, LDD1, A2, LDA2, $ B2, LDB2, C2, LDC2, D2, LDD2, N, A, LDA, $ B, LDB, C, LDC, D, LDD, IWORK, DWORK, $ LDWORK, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99996 ) ( A(I,J), J = 1,N ) 20 CONTINUE WRITE ( NOUT, FMT = 99995 ) DO 40 I = 1, N WRITE ( NOUT, FMT = 99996 ) ( B(I,J), J = 1,M1 ) 40 CONTINUE WRITE ( NOUT, FMT = 99994 ) DO 60 I = 1, P1 WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,N ) 60 CONTINUE WRITE ( NOUT, FMT = 99993 ) DO 80 I = 1, P1 WRITE ( NOUT, FMT = 99996 ) ( D(I,J), J = 1,M1 ) 80 CONTINUE END IF END IF END IF END IF END IF STOP * 99999 FORMAT (' AB05ND EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from AB05ND = ',I2) 99997 FORMAT (' The state transition matrix of the connected system is') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' The input/state matrix of the connected system is ') 99994 FORMAT (/' The state/output matrix of the connected system is ') 99993 FORMAT (/' The input/output matrix of the connected system is ') 99992 FORMAT (/' N1 is out of range.',/' N1 = ',I5) 99991 FORMAT (/' M1 is out of range.',/' M1 = ',I5) 99990 FORMAT (/' P1 is out of range.',/' P1 = ',I5) 99989 FORMAT (/' N2 is out of range.',/' N2 = ',I5) ENDProgram Data
AB05ND EXAMPLE PROGRAM DATA 3 2 2 3 1.0 0.0 -1.0 0.0 -1.0 1.0 1.0 1.0 2.0 1.0 1.0 0.0 2.0 0.0 1.0 3.0 -2.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 -3.0 0.0 0.0 1.0 0.0 1.0 0.0 -1.0 2.0 0.0 -1.0 0.0 1.0 0.0 2.0 1.0 1.0 0.0 1.0 1.0 -1.0 1.0 1.0 0.0 1.0Program Results
AB05ND EXAMPLE PROGRAM RESULTS The state transition matrix of the connected system is -0.5000 -0.2500 -1.5000 -1.2500 -1.2500 0.7500 -1.5000 -0.2500 0.5000 -0.2500 -0.2500 -0.2500 1.0000 0.5000 2.0000 -0.5000 -0.5000 0.5000 0.0000 0.5000 0.0000 -3.5000 -0.5000 0.5000 -1.5000 1.2500 -0.5000 1.2500 0.2500 1.2500 0.0000 1.0000 0.0000 -1.0000 -2.0000 3.0000 The input/state matrix of the connected system is 0.5000 0.7500 0.5000 -0.2500 0.0000 0.5000 0.0000 0.5000 -0.5000 0.2500 0.0000 1.0000 The state/output matrix of the connected system is 1.5000 -1.2500 0.5000 -0.2500 -0.2500 -0.2500 0.0000 0.5000 0.0000 -0.5000 -0.5000 0.5000 The input/output matrix of the connected system is 0.5000 -0.2500 0.0000 0.5000