TG01ND

Finite-infinite block-diagonal decomposition of a descriptor system

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute equivalence transformation matrices Q and Z which
  reduce the regular pole pencil A-lambda*E of the descriptor system
  (A-lambda*E,B,C) to the form (if JOB = 'F')

             ( Af  0  )             ( Ef  0  )
     Q*A*Z = (        ) ,   Q*E*Z = (        ) ,                 (1)
             ( 0   Ai )             ( 0   Ei )

  or to the form (if JOB = 'I')

             ( Ai  0  )             ( Ei  0  )
     Q*A*Z = (        ) ,   Q*E*Z = (        ) ,                 (2)
             ( 0   Af )             ( 0   Ef )

  where the pair (Af,Ef) is in a generalized real Schur form, with
  Ef nonsingular and upper triangular and Af in real Schur form.
  The subpencil Af-lambda*Ef contains the finite eigenvalues.
  The pair (Ai,Ei) is in a generalized real Schur form with
  both Ai and Ei upper triangular. The subpencil Ai-lambda*Ei,
  with Ai nonsingular and Ei nilpotent contains the infinite
  eigenvalues and is in a block staircase form (see METHOD).
  This decomposition corresponds to an additive decomposition of
  the transfer-function matrix of the descriptor system as the
  sum of a proper term and a polynomial term.

Specification
      SUBROUTINE TG01ND( JOB, JOBT, N, M, P, A, LDA, E, LDE, B, LDB,
     $                   C, LDC, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ,
     $                   NF, ND, NIBLCK, IBLCK, TOL, IWORK, DWORK,
     $                   LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          JOB, JOBT
      INTEGER            INFO, LDA, LDB, LDC, LDE, LDQ, LDWORK, LDZ, M,
     $                   N, ND, NF, NIBLCK, P
      DOUBLE PRECISION   TOL
C     .. Array Arguments ..
      INTEGER            IBLCK( * ), IWORK(*)
      DOUBLE PRECISION   A(LDA,*), ALPHAR(*), ALPHAI(*), B(LDB,*),
     $                   BETA(*),  C(LDC,*),  DWORK(*),  E(LDE,*),
     $                   Q(LDQ,*), Z(LDZ,*)

Arguments

Mode Parameters

  JOB     CHARACTER*1
          = 'F':  perform the finite-infinite separation;
          = 'I':  perform the infinite-finite separation.

  JOBT    CHARACTER*1
          = 'D':  compute the direct transformation matrices;
          = 'I':  compute the inverse transformation matrices
                  inv(Q) and inv(Z).

Input/Output Parameters
  N       (input) INTEGER
          The number of rows of the matrix B, the number of columns
          of the matrix C and the order of the square matrices A
          and E.  N >= 0.

  M       (input) INTEGER
          The number of columns of the matrix B.  M >= 0.

  P       (input) INTEGER
          The number of rows of the matrix C.  P >= 0.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the N-by-N state matrix A.
          On exit, the leading N-by-N part of this array contains
          the transformed state matrix Q*A*Z (if JOBT = 'D') or
          inv(Q)*A*inv(Z) (if JOBT = 'I') in the form

          ( Af  0  )                    ( Ai  0  )
          (        ) for JOB = 'F', or  (        )  for JOB = 'I',
          ( 0   Ai )                    ( 0   Af )

          where Af is an NF-by-NF matrix in real Schur form, and Ai
          is an (N-NF)-by-(N-NF) nonsingular and upper triangular
          matrix. Ai has a block structure as in (3) or (4), where
          A0,0 is ND-by-ND and Ai,i , for i = 1, ..., NIBLCK, is
          IBLCK(i)-by-IBLCK(i). (See METHOD.)

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= MAX(1,N).

  E       (input/output) DOUBLE PRECISION array, dimension (LDE,N)
          On entry, the leading N-by-N part of this array must
          contain the N-by-N descriptor matrix E.
          On exit, the leading N-by-N part of this array contains
          the transformed descriptor matrix Q*E*Z (if JOBT = 'D') or
          inv(Q)*E*inv(Z) (if JOBT = 'I') in the form

          ( Ef  0  )                    ( Ei  0  )
          (        ) for JOB = 'F', or  (        )  for JOB = 'I',
          ( 0   Ei )                    ( 0   Ef )

          where Ef is an NF-by-NF nonsingular and upper triangular
          matrix, and Ei is an (N-NF)-by-(N-NF) nilpotent matrix in
          an upper triangular block form as in (3) or (4).

  LDE     INTEGER
          The leading dimension of the array E.  LDE >= MAX(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, the leading N-by-M part of this array must
          contain the N-by-M input matrix B.
          On exit, the leading N-by-M part of this array contains
          the transformed input matrix Q*B (if JOBT = 'D') or
          inv(Q)*B (if JOBT = 'I').

  LDB     INTEGER
          The leading dimension of the array B.  LDB >= MAX(1,N).

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the leading P-by-N part of this array must
          contain the state/output matrix C.
          On exit, the leading P-by-N part of this array contains
          the transformed matrix C*Z (if JOBT = 'D') or C*inv(Z)
          (if JOBT = 'I').

  LDC     INTEGER
          The leading dimension of the array C.  LDC >= MAX(1,P).

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N)
          ALPHAR(1:NF) will be set to the real parts of the diagonal
          elements of Af that would result from reducing A and E to
          the Schur form, and then further reducing both of them to
          triangular form using unitary transformations, subject to
          having the diagonal of E positive real. Thus, if Af(j,j)
          is in a 1-by-1 block (i.e., Af(j+1,j) = Af(j,j+1) = 0),
          then ALPHAR(j) = Af(j,j). Note that the (real or complex)
          values (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are
          the finite generalized eigenvalues of the matrix pencil
          A - lambda*E.

  ALPHAI  (output) DOUBLE PRECISION array, dimension (N)
          ALPHAI(1:NF) will be set to the imaginary parts of the
          diagonal elements of Af that would result from reducing A
          and E to Schur form, and then further reducing both of
          them to triangular form using unitary transformations,
          subject to having the diagonal of E positive real. Thus,
          if Af(j,j) is in a 1-by-1 block (see above), then
          ALPHAI(j) = 0. Note that the (real or complex) values
          (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are the
          finite generalized eigenvalues of the matrix pencil
          A - lambda*E.

  BETA    (output) DOUBLE PRECISION array, dimension (N)
          BETA(1:NF) will be set to the (real) diagonal elements of
          Ef that would result from reducing A and E to Schur form,
          and then further reducing both of them to triangular form
          using unitary transformations, subject to having the
          diagonal of E positive real. Thus, if Af(j,j) is in a
          1-by-1 block (see above), then BETA(j) = Ef(j,j).
          Note that the (real or complex) values
          (ALPHAR(j) + i*ALPHAI(j))/BETA(j), j=1,...,NF, are the
          finite generalized eigenvalues of the matrix pencil
          A - lambda*E.

  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
          The leading N-by-N part of this array contains the
          left transformation matrix Q, if JOBT = 'D', or its
          inverse inv(Q), if JOBT = 'I'.

  LDQ     INTEGER
          The leading dimension of the array Q.  LDQ >= MAX(1,N).

  Z       (output) DOUBLE PRECISION array, dimension (LDZ,N)
          The leading N-by-N part of this array contains the
          right transformation matrix Z, if JOBT = 'D', or its
          inverse inv(Z), if JOBT = 'I'.

  LDZ     INTEGER
          The leading dimension of the array Z.  LDZ >= MAX(1,N).

  NF      (output) INTEGER
          The order of the reduced matrices Af and Ef; also, the
          number of finite generalized eigenvalues of the pencil
          A-lambda*E.

  ND      (output) INTEGER
          The number of non-dynamic infinite eigenvalues of the
          matrix pair (A,E). Note: N-ND is the rank of the matrix E.

  NIBLCK  (output) INTEGER
          If ND > 0, the number of infinite blocks minus one.
          If ND = 0, then NIBLCK = 0.

  IBLCK   (output) INTEGER array, dimension (N)
          IBLCK(i) contains the dimension of the i-th block in the
          staircase form (3), where i = 1,2,...,NIBLCK.

Tolerances
  TOL     DOUBLE PRECISION
          A tolerance used in rank decisions to determine the
          effective rank, which is defined as the order of the
          largest leading (or trailing) triangular submatrix in the
          QR factorization with column pivoting whose estimated
          condition number is less than 1/TOL. If the user sets
          TOL <= 0, then an implicitly computed, default tolerance
          TOLDEF = N**2*EPS,  is used instead, where EPS is the
          machine precision (see LAPACK Library routine DLAMCH).
          TOL < 1.

Workspace
  IWORK   INTEGER array, dimension (N+6)

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.  LDWORK >= 1, and if N > 0,
          LDWORK >= 4*N.

          If LDWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal size of the DWORK
          array, returns this value as the first entry of the DWORK
          array, and no error message related to LDWORK is issued by
          XERBLA.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the pencil A-lambda*E is not regular;
          = 2:  the QZ iteration did not converge;
          = 3:  (Af,Ef) and (Ai,Ei) have too close generalized
                eigenvalues.

Method
  For the separation of infinite structure, the reduction algorithm
  of [1] is employed. This separation is achieved by computing
  orthogonal matrices Q1 and Z1 such that Q1*A*Z1 and Q1*E*Z1
  have the form (if JOB = 'F')

              ( Af  Ao )              ( Ef  Eo )
    Q1*A*Z1 = (        ) ,  Q1*E*Z1 = (        ) ,
              ( 0   Ai )              ( 0   Ei )

  or to the form (if JOB = 'I')

              ( Ai  Ao )              ( Ei  Eo )
    Q1*A*Z1 = (        ) ,  Q1*E*Z1 = (        ) .
              ( 0   Af )              ( 0   Ef )

  If JOB = 'F', the matrices Ai and Ei have the form

        ( A0,0  A0,k ... A0,1 )         ( 0  E0,k ... E0,1 )
   Ai = (  0    Ak,k ... Ak,1 ) ,  Ei = ( 0   0   ... Ek,1 ) ;   (3)
        (  :     :    .    :  )         ( :   :    .    :  )
        (  0     0   ... A1,1 )         ( 0   0   ...   0  )

  if JOB = 'I' the matrices Ai and Ei have the form

        ( A1,1 ... A1,k  A1,0 )         ( 0 ... E1,k  E1,0 )
   Ai = (  :    .    :    :   ) ,  Ei = ( :  .    :    :   ) ,   (4)
        (  :   ... Ak,k  Ak,0 )         ( : ...   0   Ek,0 )
        (  0   ...   0   A0,0 )         ( 0 ...   0     0  )

  where Ai,i, for i = 0, 1, ..., k, are nonsingular upper triangular
  matrices. A0,0 corresponds to the non-dynamic infinite modes of
  the system.

  In a second step, the transformation matrices Q2 and Z2 are
  determined, of the form

          ( I -X )          ( I  Y )
     Q2 = (      ) ,   Z2 = (      )
          ( 0  I )          ( 0  I )

  such that with Q = Q2*Q1 and Z = Z1*Z2, Q*A*Z and Q*E*Z are
  block diagonal as in (1) (if JOB = 'F') or in (2) (if JOB = 'I').
  X and Y are computed by solving generalized Sylvester equations.

  If we partition Q*B and C*Z according to (1) or (2) in the form
  ( Bf ) and ( Cf Ci ), if JOB = 'F', or ( Bi ) and ( Ci Cf ), if
  ( Bi )                                 ( Bf )
  JOB = 'I', then (Af-lambda*Ef,Bf,Cf) is the stricly proper part
  of the original descriptor system and (Ai-lambda*Ei,Bi,Ci) is its
  polynomial part.

References
  [1] Misra, P., Van Dooren, P., and Varga, A.
      Computation of structural invariants of generalized
      state-space systems.
      Automatica, 30, pp. 1921-1936, 1994.

Numerical Aspects
  The algorithm is numerically backward stable and requires
  0( N**3 )  floating point operations.

Further Comments
  The number of infinite poles is computed as

                NIBLCK
     NINFP =     Sum  IBLCK(i) = N - ND - NF.
                 i=1

  The multiplicities of infinite poles can be computed as follows:
  there are IBLCK(k)-IBLCK(k+1) infinite poles of multiplicity
  k, for k = 1, ..., NIBLCK, where IBLCK(NIBLCK+1) = 0.
  Note that each infinite pole of multiplicity k corresponds to
  an infinite eigenvalue of multiplicity k+1.

Example

Program Text

*     TG01ND EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDE, LDQ, LDZ
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX,
     $                   LDE = NMAX, LDQ = NMAX, LDZ = NMAX )
      INTEGER          LDWORK
      PARAMETER        ( LDWORK = 4*NMAX )
*     .. Local Scalars ..
      CHARACTER*1      JOB, JOBT
      INTEGER          I, INFO, J, M, N, ND, NF, NIBLCK, P
      DOUBLE PRECISION TOL
*     .. Local Arrays ..
      INTEGER          IBLCK(NMAX),  IWORK(NMAX+6)
      DOUBLE PRECISION A(LDA,NMAX),  ALPHAI(NMAX), ALPHAR(NMAX),
     $                 B(LDB,MMAX),    BETA(NMAX), C(LDC,NMAX),
     $                 DWORK(LDWORK), E(LDE,NMAX), Q(LDQ,NMAX),
     $                 Z(LDZ,NMAX)
*     .. External Subroutines ..
      EXTERNAL         TG01ND
*     .. Intrinsic Functions ..
      INTRINSIC        DCMPLX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, JOB, JOBT, TOL
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99988 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         READ ( NIN, FMT = * ) ( ( E(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99987 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99986 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
*              Find the reduced descriptor system
*              (A-lambda E,B,C).
               CALL TG01ND( JOB, JOBT, N, M, P, A, LDA, E, LDE, B, LDB,
     $                      C, LDC, ALPHAR, ALPHAI, BETA, Q, LDQ, Z,
     $                      LDZ, NF, ND, NIBLCK, IBLCK, TOL, IWORK,
     $                      DWORK, LDWORK, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99994 ) NF, ND
                  WRITE ( NOUT, FMT = 99989 ) NIBLCK + 1
                  IF ( NIBLCK.GT.0 ) THEN
                     WRITE ( NOUT, FMT = 99985 )
     $                     ( IBLCK(I), I = 1, NIBLCK ) 
                  END IF
                  WRITE ( NOUT, FMT = 99997 )
                  DO 10 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,N )
   10             CONTINUE
                  WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( E(I,J), J = 1,N )
   20             CONTINUE
                  WRITE ( NOUT, FMT = 99993 )
                  DO 30 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( B(I,J), J = 1,M )
   30             CONTINUE
                  WRITE ( NOUT, FMT = 99992 )
                  DO 40 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( C(I,J), J = 1,N )
   40             CONTINUE
                  WRITE ( NOUT, FMT = 99991 )
                  DO 50 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( Q(I,J), J = 1,N )
   50             CONTINUE
                  WRITE ( NOUT, FMT = 99990 )
                  DO 60 I = 1, N
                     WRITE ( NOUT, FMT = 99995 ) ( Z(I,J), J = 1,N )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99985 )
                  DO 70 I = 1, NF
                     WRITE ( NOUT, FMT = 99984 )
     $                  DCMPLX( ALPHAR(I), ALPHAI(I) )/BETA(I)
   70             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TG01ND EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TG01ND = ',I2)
99997 FORMAT (/' The transformed state dynamics matrix Q*A*Z is ')
99996 FORMAT (/' The transformed descriptor matrix Q*E*Z is ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (' Order of reduced system =', I5/
     $        ' Number of non-dynamic infinite eigenvalues =', I5)
99993 FORMAT (/' The transformed input/state matrix Q*B is ')
99992 FORMAT (/' The transformed state/output matrix C*Z is ')
99991 FORMAT (/' The left transformation matrix Q is ')
99990 FORMAT (/' The right transformation matrix Z is ')
99989 FORMAT ( ' Number of infinite blocks = ',I5)
99988 FORMAT (/' N is out of range.',/' N = ',I5)
99987 FORMAT (/' M is out of range.',/' M = ',I5)
99986 FORMAT (/' P is out of range.',/' P = ',I5)
99985 FORMAT (/' The finite generalized eigenvalues are '/
     $         ' real  part     imag  part ')
99984 FORMAT (1X,F9.4,SP,F9.4,S,'i ')
      END
Program Data
TG01ND EXAMPLE PROGRAM DATA
  4     2     2     F     D     0.0    
    -1     0     0     3
     0     0     1     2
     1     1     0     4
     0     0     0     0
     1     2     0     0
     0     1     0     1
     3     9     6     3
     0     0     2     0
     1     0
     0     0
     0     1
     1     1
    -1     0     1     0
     0     1    -1     1
Program Results
 TG01ND EXAMPLE PROGRAM RESULTS

 Order of reduced system =    3
 Number of non-dynamic infinite eigenvalues =    1
 Number of infinite blocks =     1

 The transformed state dynamics matrix Q*A*Z is 
   1.2803  -2.3613  -0.9025   0.0000
   0.0000  -0.5796   0.8504   0.0000
   0.0000   0.0000   0.0000   0.0000
   0.0000   0.0000   0.0000   2.2913

 The transformed descriptor matrix Q*E*Z is 
   9.3142  -4.1463   5.4026   0.0000
   0.0000   0.1594   0.1212   0.0000
   0.0000   0.0000   2.3524   0.0000
   0.0000   0.0000   0.0000   0.0000

 The transformed input/state matrix Q*B is 
   7.7328   1.6760
   2.2870   0.4660
  -1.2140  -1.2140
   1.1339   0.3780

 The transformed state/output matrix C*Z is 
  -0.0469  -0.9391  -0.8847  -6.0622
  -1.0697   0.3620   1.1795  -0.0000

 The left transformation matrix Q is 
   3.7620   3.8560  -2.2948   3.9708
   1.4909   0.0798  -0.3301   0.7961
  -0.0000  -0.0000   0.0000  -1.2140
   0.5669   0.5669  -0.1890   0.5669

 The right transformation matrix Z is 
   0.0469   0.9391  -0.0843   6.0622
  -0.9962   0.0189  -0.0211  -3.0311
   0.0000  -0.0000  -0.9689  -0.0000
  -0.0735   0.3432   0.2317   3.0311

 The finite generalized eigenvalues are 
 real  part     imag  part 
    0.1375  +0.0000i 
   -3.6375  +0.0000i 
    0.0000  +0.0000i 

Return to index