TB01ID

Balancing a system matrix corresponding to a triplet (A,B,C)

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To reduce the 1-norm of a system matrix

          S =  ( A  B )
               ( C  0 )

  corresponding to the triple (A,B,C), by balancing. This involves
  a diagonal similarity transformation inv(D)*A*D applied
  iteratively to A to make the rows and columns of
                        -1
               diag(D,I)  * S * diag(D,I)

  as close in norm as possible.

  The balancing can be performed optionally on the following
  particular system matrices

           S = A,    S = ( A  B )    or    S = ( A )
                                               ( C )

Specification
      SUBROUTINE TB01ID( JOB, N, M, P, MAXRED, A, LDA, B, LDB, C, LDC,
     $                   SCALE, INFO )
C     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            INFO, LDA, LDB, LDC, M, N, P
      DOUBLE PRECISION   MAXRED
C     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), C( LDC, * ),
     $                   SCALE( * )

Arguments

Mode Parameters

  JOB     CHARACTER*1
          Indicates which matrices are involved in balancing, as
          follows:
          = 'A':  All matrices are involved in balancing;
          = 'B':  B and A matrices are involved in balancing;
          = 'C':  C and A matrices are involved in balancing;
          = 'N':  B and C matrices are not involved in balancing.

Input/Output Parameters
  N       (input) INTEGER
          The order of the matrix A, the number of rows of matrix B
          and the number of columns of matrix C.
          N represents the dimension of the state vector.  N >= 0.

  M       (input) INTEGER.
          The number of columns of matrix B.
          M represents the dimension of input vector.  M >= 0.

  P       (input) INTEGER.
          The number of rows of matrix C.
          P represents the dimension of output vector.  P >= 0.

  MAXRED  (input/output) DOUBLE PRECISION
          On entry, the maximum allowed reduction in the 1-norm of
          S (in an iteration) if zero rows or columns are
          encountered.
          If MAXRED > 0.0, MAXRED must be larger than one (to enable
          the norm reduction).
          If MAXRED <= 0.0, then the value 10.0 for MAXRED is
          used.
          On exit, if the 1-norm of the given matrix S is non-zero,
          the ratio between the 1-norm of the given matrix and the
          1-norm of the balanced matrix.

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the system state matrix A.
          On exit, the leading N-by-N part of this array contains
          the balanced matrix inv(D)*A*D.

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

  B       (input/output) DOUBLE PRECISION array, dimension (LDB,M)
          On entry, if M > 0, the leading N-by-M part of this array
          must contain the system input matrix B.
          On exit, if M > 0, the leading N-by-M part of this array
          contains the balanced matrix inv(D)*B.
          The array B is not referenced if M = 0.

  LDB     INTEGER
          The leading dimension of the array B.
          LDB >= MAX(1,N) if M > 0.
          LDB >= 1        if M = 0.

  C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
          On entry, if P > 0, the leading P-by-N part of this array
          must contain the system output matrix C.
          On exit, if P > 0, the leading P-by-N part of this array
          contains the balanced matrix C*D.
          The array C is not referenced if P = 0.

  LDC     INTEGER
          The leading dimension of the array C.  LDC >= MAX(1,P).

  SCALE   (output) DOUBLE PRECISION array, dimension (N)
          The scaling factors applied to S.  If D(j) is the scaling
          factor applied to row and column j, then SCALE(j) = D(j),
          for j = 1,...,N.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.

Method
  Balancing consists of applying a diagonal similarity
  transformation
                        -1
               diag(D,I)  * S * diag(D,I)

  to make the 1-norms of each row of the first N rows of S and its
  corresponding column nearly equal.

  Information about the diagonal matrix D is returned in the vector
  SCALE.

References
  [1] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
      Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
      Ostrouchov, S., and Sorensen, D.
      LAPACK Users' Guide: Second Edition.
      SIAM, Philadelphia, 1995.

Numerical Aspects
  None.

Further Comments
  None
Example

Program Text

*     TB01ID EXAMPLE PROGRAM TEXT.
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC
      PARAMETER        ( LDA = NMAX, LDB = NMAX, LDC = PMAX )
*     .. Local Scalars ..
      CHARACTER*1      JOB
      INTEGER          I, INFO, J, M, N, P
      DOUBLE PRECISION MAXRED
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 SCALE(NMAX)
*     .. External Subroutines ..
      EXTERNAL         TB01ID, UD01MD
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, JOB, MAXRED
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99993 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99992 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
            IF ( P.LT.0 .OR. P.GT.MMAX ) THEN
               WRITE ( NOUT, FMT = 99991 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
*              Balance system matrix S.
               CALL TB01ID( JOB, N, M, P, MAXRED, A, LDA, B, LDB, C,
     $                      LDC, SCALE, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  CALL UD01MD( N, N, 5, NOUT, A, LDA,
     $                        'The balanced matrix A', INFO )
                  IF ( M.GT.0 )
     $               CALL UD01MD( N, M, 5, NOUT, B, LDB,
     $                            'The balanced matrix B', INFO )
                  IF ( P.GT.0 )
     $               CALL UD01MD( P, N, 5, NOUT, C, LDC,
     $                            'The balanced matrix C', INFO )
                  CALL UD01MD( 1, N, 5, NOUT, SCALE, 1,
     $                        'The scaling vector SCALE', INFO )
                  WRITE ( NOUT, FMT = 99994 ) MAXRED
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' TB01ID EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from TB01ID = ',I2)
99994 FORMAT (/' MAXRED is ',E13.4)
99993 FORMAT (/' N is out of range.',/' N = ',I5)
99992 FORMAT (/' M is out of range.',/' M = ',I5)
99991 FORMAT (/' P is out of range.',/' P = ',I5)
      END
Program Data
 TB01ID EXAMPLE PROGRAM DATA
   5     2     5       A    0.0
          0.0  1.0000e+000          0.0          0.0          0.0
 -1.5800e+006 -1.2570e+003          0.0          0.0          0.0
  3.5410e+014          0.0 -1.4340e+003          0.0 -5.3300e+011
          0.0          0.0          0.0          0.0  1.0000e+000
          0.0          0.0          0.0 -1.8630e+004 -1.4820e+000
          0.0          0.0
  1.1030e+002          0.0
          0.0          0.0
          0.0          0.0
          0.0  8.3330e-003
  1.0000e+000          0.0          0.0          0.0          0.0
          0.0          0.0  1.0000e+000          0.0          0.0
          0.0          0.0          0.0  1.0000e+000          0.0
  6.6640e-001          0.0 -6.2000e-013          0.0          0.0
          0.0          0.0 -1.0000e-003  1.8960e+006  1.5080e+002
Program Results
 TB01ID EXAMPLE PROGRAM RESULTS

 The balanced matrix A ( 5X 5)

            1              2              3              4              5
  1    0.0000000D+00  0.1000000D+05  0.0000000D+00  0.0000000D+00  0.0000000D+00
  2   -0.1580000D+03 -0.1257000D+04  0.0000000D+00  0.0000000D+00  0.0000000D+00
  3    0.3541000D+05  0.0000000D+00 -0.1434000D+04  0.0000000D+00 -0.5330000D+03
  4    0.0000000D+00  0.0000000D+00  0.0000000D+00  0.0000000D+00  0.1000000D+03
  5    0.0000000D+00  0.0000000D+00  0.0000000D+00 -0.1863000D+03 -0.1482000D+01
 
 The balanced matrix B ( 5X 2)

            1              2
  1    0.0000000D+00  0.0000000D+00
  2    0.1103000D+04  0.0000000D+00
  3    0.0000000D+00  0.0000000D+00
  4    0.0000000D+00  0.0000000D+00
  5    0.0000000D+00  0.8333000D+02
 
 The balanced matrix C ( 5X 5)

            1              2              3              4              5
  1    0.1000000D-04  0.0000000D+00  0.0000000D+00  0.0000000D+00  0.0000000D+00
  2    0.0000000D+00  0.0000000D+00  0.1000000D+06  0.0000000D+00  0.0000000D+00
  3    0.0000000D+00  0.0000000D+00  0.0000000D+00  0.1000000D-05  0.0000000D+00
  4    0.6664000D-05  0.0000000D+00 -0.6200000D-07  0.0000000D+00  0.0000000D+00
  5    0.0000000D+00  0.0000000D+00 -0.1000000D+03  0.1896000D+01  0.1508000D-01
 
 The scaling vector SCALE ( 1X 5)

            1              2              3              4              5
  1    0.1000000D-04  0.1000000D+00  0.1000000D+06  0.1000000D-05  0.1000000D-03
 

 MAXRED is    0.3488E+10

Return to index