SB16BD

Coprime factorization based state feedback controller reduction

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute, for a given open-loop model (A,B,C,D), and for
  given state feedback gain F and full observer gain G,
  such that A+B*F and A+G*C are stable, a reduced order
  controller model (Ac,Bc,Cc,Dc) using a coprime factorization
  based controller reduction approach. For reduction,
  either the square-root or the balancing-free square-root
  versions of the Balance & Truncate (B&T) or Singular Perturbation
  Approximation (SPA) model reduction methods are used in
  conjunction with stable coprime factorization techniques.

Specification
      SUBROUTINE SB16BD( DICO, JOBD, JOBMR, JOBCF, EQUIL, ORDSEL,
     $                   N, M, P, NCR, A, LDA, B, LDB, C, LDC, D, LDD,
     $                   F, LDF, G, LDG, DC, LDDC, HSV, TOL1, TOL2,
     $                   IWORK, DWORK, LDWORK, IWARN, INFO )
C     .. Scalar Arguments ..
      CHARACTER         DICO, EQUIL, JOBCF, JOBD, JOBMR, ORDSEL
      INTEGER           INFO, IWARN, LDA, LDB, LDC, LDD, LDDC,
     $                  LDF, LDG, LDWORK, M, N, NCR, P
      DOUBLE PRECISION  TOL1, TOL2
C     .. Array Arguments ..
      INTEGER           IWORK(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(LDD,*),
     $                  DC(LDDC,*), DWORK(*), F(LDF,*), G(LDG,*), HSV(*)

Arguments

Mode Parameters

  DICO    CHARACTER*1
          Specifies the type of the open-loop system as follows:
          = 'C':  continuous-time system;
          = 'D':  discrete-time system.

  JOBD    CHARACTER*1
          Specifies whether or not a non-zero matrix D appears
          in the given state space model:
          = 'D':  D is present;
          = 'Z':  D is assumed a zero matrix.

  JOBMR   CHARACTER*1
          Specifies the model reduction approach to be used
          as follows:
          = 'B':  use the square-root B&T method;
          = 'F':  use the balancing-free square-root B&T method;
          = 'S':  use the square-root SPA method;
          = 'P':  use the balancing-free square-root SPA method.

  JOBCF   CHARACTER*1
          Specifies whether left or right coprime factorization is
          to be used as follows:
          = 'L':  use left coprime factorization;
          = 'R':  use right coprime factorization.

  EQUIL   CHARACTER*1
          Specifies whether the user wishes to perform a
          preliminary equilibration before performing
          order reduction as follows:
          = 'S':  perform equilibration (scaling);
          = 'N':  do not perform equilibration.

  ORDSEL  CHARACTER*1
          Specifies the order selection method as follows:
          = 'F':  the resulting controller order NCR is fixed;
          = 'A':  the resulting controller order NCR is
                  automatically determined on basis of the given
                  tolerance TOL1.

Input/Output Parameters
  N       (input) INTEGER
          The order of the open-loop state-space representation,
          i.e., the order of the matrix A.  N >= 0.
          N also represents the order of the original state-feedback
          controller.

  M       (input) INTEGER
          The number of system inputs.  M >= 0.

  P       (input) INTEGER
          The number of system outputs.  P >= 0.

  NCR     (input/output) INTEGER
          On entry with ORDSEL = 'F', NCR is the desired order of
          the resulting reduced order controller.  0 <= NCR <= N.
          On exit, if INFO = 0, NCR is the order of the resulting
          reduced order controller. NCR is set as follows:
          if ORDSEL = 'F', NCR is equal to MIN(NCR,NMIN), where NCR
          is the desired order on entry, and NMIN is the order of a
          minimal realization of an extended system Ge (see METHOD);
          NMIN is determined as the number of
          Hankel singular values greater than N*EPS*HNORM(Ge),
          where EPS is the machine precision (see LAPACK Library
          Routine DLAMCH) and HNORM(Ge) is the Hankel norm of the
          extended system (computed in HSV(1));
          if ORDSEL = 'A', NCR is equal to the number of Hankel
          singular values greater than MAX(TOL1,N*EPS*HNORM(Ge)).

  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the leading N-by-N part of this array must
          contain the original state dynamics matrix A.
          On exit, if INFO = 0, the leading NCR-by-NCR part of this
          array contains the state dynamics matrix Ac of the reduced
          controller.

  LDA     INTEGER
          The leading dimension of array A.  LDA >= MAX(1,N).

  B       (input) DOUBLE PRECISION array, dimension (LDB,M)
          The leading N-by-M part of this array must
          contain the original input/state matrix B.

  LDB     INTEGER
          The leading dimension of array B.  LDB >= MAX(1,N).

  C       (input) DOUBLE PRECISION array, dimension (LDC,N)
          The leading P-by-N part of this array must
          contain the original state/output matrix C.

  LDC     INTEGER
          The leading dimension of array C.  LDC >= MAX(1,P).

  D       (input) DOUBLE PRECISION array, dimension (LDD,M)
          If JOBD = 'D', the leading P-by-M part of this
          array must contain the system direct input/output
          transmission matrix D.
          The array D is not referenced if JOBD = 'Z'.

  LDD     INTEGER
          The leading dimension of array D.
          LDD >= MAX(1,P), if JOBD = 'D';
          LDD >= 1,        if JOBD = 'Z'.

  F       (input/output) DOUBLE PRECISION array, dimension (LDF,N)
          On entry, the leading M-by-N part of this array must
          contain a stabilizing state feedback matrix.
          On exit, if INFO = 0, the leading M-by-NCR part of this
          array contains the state/output matrix Cc of the reduced
          controller.

  LDF     INTEGER
          The leading dimension of array F.  LDF >= MAX(1,M).

  G       (input/output) DOUBLE PRECISION array, dimension (LDG,P)
          On entry, the leading N-by-P part of this array must
          contain a stabilizing observer gain matrix.
          On exit, if INFO = 0, the leading NCR-by-P part of this
          array contains the input/state matrix Bc of the reduced
          controller.

  LDG     INTEGER
          The leading dimension of array G.  LDG >= MAX(1,N).

  DC      (output) DOUBLE PRECISION array, dimension (LDDC,P)
          If INFO = 0, the leading M-by-P part of this array
          contains the input/output matrix Dc of the reduced
          controller.

  LDDC    INTEGER
          The leading dimension of array DC.  LDDC >= MAX(1,M).

  HSV     (output) DOUBLE PRECISION array, dimension (N)
          If INFO = 0, it contains the N Hankel singular values
          of the extended system ordered decreasingly (see METHOD).

Tolerances
  TOL1    DOUBLE PRECISION
          If ORDSEL = 'A', TOL1 contains the tolerance for
          determining the order of the reduced extended system.
          For model reduction, the recommended value is
          TOL1 = c*HNORM(Ge), where c is a constant in the
          interval [0.00001,0.001], and HNORM(Ge) is the
          Hankel norm of the extended system (computed in HSV(1)).
          The value TOL1 = N*EPS*HNORM(Ge) is used by default if
          TOL1 <= 0 on entry, where EPS is the machine precision
          (see LAPACK Library Routine DLAMCH).
          If ORDSEL = 'F', the value of TOL1 is ignored.

  TOL2    DOUBLE PRECISION
          The tolerance for determining the order of a minimal
          realization of the coprime factorization controller
          (see METHOD). The recommended value is
          TOL2 = N*EPS*HNORM(Ge) (see METHOD).
          This value is used by default if TOL2 <= 0 on entry.
          If TOL2 > 0 and ORDSEL = 'A', then TOL2 <= TOL1.

Workspace
  IWORK   INTEGER array, dimension (LIWORK)
          LIWORK = 0,         if ORDSEL = 'F' and NCR = N.
                                              Otherwise,
          LIWORK = MAX(PM,M), if JOBCF = 'L',
          LIWORK = MAX(PM,P), if JOBCF = 'R', where
          PM = 0,             if JOBMR = 'B',
          PM = N,             if JOBMR = 'F',
          PM = MAX(1,2*N),    if JOBMR = 'S' or 'P'.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK.

  LDWORK  INTEGER
          The length of the array DWORK.
          LDWORK >= P*N, if ORDSEL = 'F' and NCR = N. Otherwise,
          LDWORK >= (N+M)*(M+P) + MAX(LWR,4*M), if JOBCF = 'L',
          LDWORK >= (N+P)*(M+P) + MAX(LWR,4*P), if JOBCF = 'R',
          where LWR = MAX(1,N*(2*N+MAX(N,M+P)+5)+N*(N+1)/2).
          For optimum performance LDWORK should be larger.

Warning Indicator
  IWARN   INTEGER
          = 0:  no warning;
          = 1:  with ORDSEL = 'F', the selected order NCR is
                greater than the order of a minimal
                realization of the controller.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value;
          = 1:  the reduction of A+G*C to a real Schur form
                failed;
          = 2:  the matrix A+G*C is not stable (if DICO = 'C'),
                or not convergent (if DICO = 'D');
          = 3:  the computation of Hankel singular values failed;
          = 4:  the reduction of A+B*F to a real Schur form
                failed;
          = 5:  the matrix A+B*F is not stable (if DICO = 'C'),
                or not convergent (if DICO = 'D').

Method
  Let be the linear system

       d[x(t)] = Ax(t) + Bu(t)
       y(t)    = Cx(t) + Du(t),                             (1)

  where d[x(t)] is dx(t)/dt for a continuous-time system and x(t+1)
  for a discrete-time system, and let Go(d) be the open-loop
  transfer-function matrix
                        -1
       Go(d) = C*(d*I-A) *B + D .

  Let F and G be the state feedback and observer gain matrices,
  respectively, chosen so that A+B*F and A+G*C are stable matrices.
  The controller has a transfer-function matrix K(d) given by
                                     -1
       K(d) = F*(d*I-A-B*F-G*C-G*D*F) *G .

  The closed-loop transfer-function matrix is given by
                                  -1
       Gcl(d) = Go(d)(I+K(d)Go(d)) .

  K(d) can be expressed as a left coprime factorization (LCF),
                       -1
       K(d) = M_left(d) *N_left(d) ,

  or as a right coprime factorization (RCF),
                                   -1
       K(d) = N_right(d)*M_right(d) ,

  where M_left(d), N_left(d), N_right(d), and M_right(d) are
  stable transfer-function matrices.

  The subroutine SB16BD determines the matrices of a reduced
  controller

       d[z(t)] = Ac*z(t) + Bc*y(t)
       u(t)    = Cc*z(t) + Dc*y(t),                           (2)

  with the transfer-function matrix Kr as follows:

  (1) If JOBCF = 'L', the extended system
      Ge(d)  = [ N_left(d) M_left(d) ] is reduced to
      Ger(d) = [ N_leftr(d) M_leftr(d) ] by using either the
      B&T or SPA methods. The reduced order controller Kr(d)
      is computed as
                        -1
      Kr(d) = M_leftr(d) *N_leftr(d) ;

  (2) If JOBCF = 'R', the extended system
      Ge(d) = [ N_right(d) ] is reduced to
              [ M_right(d) ]
      Ger(d) = [ N_rightr(d) ] by using either the
               [ M_rightr(d) ]
      B&T or SPA methods. The reduced order controller Kr(d)
      is computed as
                                      -1
      Kr(d) = N_rightr(d)* M_rightr(d) .

  If ORDSEL = 'A', the order of the controller is determined by
  computing the number of Hankel singular values greater than
  the given tolerance TOL1. The Hankel singular values are
  the square roots of the eigenvalues of the product of
  the controllability and observability Grammians of the
  extended system Ge.

  If JOBMR = 'B', the square-root B&T method of [1] is used.

  If JOBMR = 'F', the balancing-free square-root version of the
  B&T method [1] is used.

  If JOBMR = 'S', the square-root version of the SPA method [2,3]
  is used.

  If JOBMR = 'P', the balancing-free square-root version of the
  SPA method [2,3] is used.

References
  [1] Tombs, M.S. and Postlethwaite, I.
      Truncated balanced realization of stable, non-minimal
      state-space systems.
      Int. J. Control, Vol. 46, pp. 1319-1330, 1987.

  [2] Varga, A.
      Efficient minimal realization procedure based on balancing.
      Proc. of IMACS/IFAC Symp. MCTS, Lille, France, May 1991,
      A. El Moudui, P. Borne, S. G. Tzafestas (Eds.), Vol. 2,
      pp. 42-46, 1991.

  [3] Varga, A.
      Coprime factors model reduction method based on square-root
      balancing-free techniques.
      System Analysis, Modelling and Simulation, Vol. 11,
      pp. 303-311, 1993.

  [4] Liu, Y., Anderson, B.D.O. and Ly, O.L.
      Coprime factorization controller reduction with Bezout
      identity induced frequency weighting.
      Automatica, vol. 26, pp. 233-249, 1990.

Numerical Aspects
  The implemented methods rely on accuracy enhancing square-root or
  balancing-free square-root techniques.
                                      3
  The algorithms require less than 30N  floating point operations.

Further Comments
  None
Example

Program Text

*     SB16BD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          NMAX, MMAX, PMAX
      PARAMETER        ( NMAX = 20, MMAX = 20, PMAX = 20 )
      INTEGER          LDA, LDB, LDC, LDD, LDDC, LDF, LDG
      PARAMETER        ( LDA = NMAX, LDB  = NMAX, LDC = PMAX,
     $                   LDD = PMAX, LDDC = MMAX, LDF = MMAX, LDG = NMAX
     $                 )
      INTEGER          LDWORK, LIWORK, MAXMP, MPMAX
      PARAMETER        ( LIWORK = 2*NMAX, MAXMP = MAX( MMAX, PMAX ),
     $                   MPMAX  = MMAX + PMAX )
      PARAMETER        ( LDWORK = ( NMAX + MAXMP )*MPMAX +
     $                            MAX ( NMAX*( 2*NMAX +
     $                                         MAX( NMAX, MPMAX ) + 5 )
     $                                      + ( NMAX*( NMAX + 1 ) )/2,
     $                                  4*MAXMP ) )
      CHARACTER        DICO, EQUIL, JOBCF, JOBD, JOBMR, ORDSEL
      INTEGER          I, INFO, IWARN, J, M, N, NCR, P
      DOUBLE PRECISION TOL1, TOL2
*     .. Local Arrays ..
      DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,NMAX),
     $                 D(LDD,MMAX), DC(LDDC,PMAX), DWORK(LDWORK),
     $                 F(LDF,NMAX), G(LDG,PMAX), HSV(NMAX)
      INTEGER          IWORK(LIWORK)
*     .. External Subroutines ..
      EXTERNAL         SB16BD
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) N, M, P, NCR, TOL1, TOL2,
     $                      DICO, JOBD, JOBMR, JOBCF, EQUIL, ORDSEL
      IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) N
      ELSE
         READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
         IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
            WRITE ( NOUT, FMT = 99989 ) M
         ELSE
            READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1, N )
            IF ( P.LT.0 .OR. P.GT.PMAX ) THEN
               WRITE ( NOUT, FMT = 99988 ) P
            ELSE
               READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,P )
               READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,P )
               READ ( NIN, FMT = * ) ( ( F(I,J), J = 1,N ), I = 1,M )
               READ ( NIN, FMT = * ) ( ( G(I,J), J = 1,P ), I = 1,N )
*              Find a reduced ssr for (A,B,C,D).
               CALL SB16BD( DICO, JOBD, JOBMR, JOBCF, EQUIL, ORDSEL, N,
     $                      M, P, NCR, A, LDA, B, LDB, C, LDC, D, LDD,
     $                      F, LDF, G, LDG, DC, LDDC, HSV, TOL1, TOL2,
     $                      IWORK, DWORK, LDWORK, IWARN, INFO )
*
               IF ( INFO.NE.0 ) THEN
                  WRITE ( NOUT, FMT = 99998 ) INFO
               ELSE
                  WRITE ( NOUT, FMT = 99997 ) NCR
                  WRITE ( NOUT, FMT = 99987 )
                  WRITE ( NOUT, FMT = 99995 ) ( HSV(J), J = 1,N )
                  IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99996 )
                  DO 20 I = 1, NCR
                     WRITE ( NOUT, FMT = 99995 ) ( A(I,J), J = 1,NCR )
   20             CONTINUE
                  IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99993 )
                  DO 40 I = 1, NCR
                     WRITE ( NOUT, FMT = 99995 ) ( G(I,J), J = 1,P )
   40             CONTINUE
                  IF( NCR.GT.0 ) WRITE ( NOUT, FMT = 99992 )
                  DO 60 I = 1, M
                     WRITE ( NOUT, FMT = 99995 ) ( F(I,J), J = 1,NCR )
   60             CONTINUE
                  WRITE ( NOUT, FMT = 99991 )
                  DO 80 I = 1, P
                     WRITE ( NOUT, FMT = 99995 ) ( DC(I,J), J = 1,M )
   80             CONTINUE
               END IF
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT (' SB16BD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from SB16BD = ',I2)
99997 FORMAT (' The order of reduced controller = ',I2)
99996 FORMAT (/' The reduced controller state dynamics matrix Ac is ')
99995 FORMAT (20(1X,F8.4))
99993 FORMAT (/' The reduced controller input/state matrix Bc is ')
99992 FORMAT (/' The reduced controller state/output matrix Cc is ')
99991 FORMAT (/' The reduced controller input/output matrix Dc is ')
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' P is out of range.',/' P = ',I5)
99987 FORMAT (/' The Hankel singular values of extended system are:')
      END
Program Data
 SB16BD EXAMPLE PROGRAM DATA (Continuous system)
  8  1  1   4   0.1E0  0.0    C  D  F  L  S   F
         0    1.0000         0         0         0         0         0        0
         0         0         0         0         0         0         0        0
         0         0   -0.0150    0.7650         0         0         0        0
         0         0   -0.7650   -0.0150         0         0         0        0
         0         0         0         0   -0.0280    1.4100         0        0
         0         0         0         0   -1.4100   -0.0280         0        0
         0         0         0         0         0         0   -0.0400    1.850
         0         0         0         0         0         0   -1.8500   -0.040
    0.0260
   -0.2510
    0.0330
   -0.8860
   -4.0170
    0.1450
    3.6040
    0.2800
  -.996 -.105 0.261 .009 -.001 -.043 0.002 -0.026
  0.0
4.4721e-002  6.6105e-001  4.6986e-003  3.6014e-001  1.0325e-001 -3.7541e-002 -4.2685e-002  3.2873e-002
  4.1089e-001
  8.6846e-002
  3.8523e-004
 -3.6194e-003
 -8.8037e-003
  8.4205e-003
  1.2349e-003
  4.2632e-003

Program Results
 SB16BD EXAMPLE PROGRAM RESULTS

 The order of reduced controller =  4

 The Hankel singular values of extended system are:
   4.9078   4.8745   3.8455   3.7811   1.2289   1.1785   0.5176   0.1148

 The reduced controller state dynamics matrix Ac is 
   0.5946  -0.7336   0.1914  -0.3368
   0.5960  -0.0184  -0.1088   0.0207
   1.2253   0.2043   0.1009  -1.4948
  -0.0330  -0.0243   1.3440   0.0035

 The reduced controller input/state matrix Bc is 
   0.0015
  -0.0202
   0.0159
  -0.0544

 The reduced controller state/output matrix Cc is 
   0.3534   0.0274   0.0337  -0.0320

 The reduced controller input/output matrix Dc is 
   0.0000

Return to index