**Purpose**

To solve for X the continuous-time Sylvester equation AX + XB = C, with at least one of the matrices A or B in Schur form and the other in Hessenberg or Schur form (both either upper or lower); A, B, C and X are N-by-N, M-by-M, N-by-M, and N-by-M matrices, respectively.

SUBROUTINE SB04ND( ABSCHU, ULA, ULB, N, M, A, LDA, B, LDB, C, $ LDC, TOL, IWORK, DWORK, LDWORK, INFO ) C .. Scalar Arguments .. CHARACTER ABSCHU, ULA, ULB INTEGER INFO, LDA, LDB, LDC, LDWORK, M, N DOUBLE PRECISION TOL C .. Array Arguments .. INTEGER IWORK(*) DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), DWORK(*)

**Mode Parameters**

ABSCHU CHARACTER*1 Indicates whether A and/or B is/are in Schur or Hessenberg form as follows: = 'A': A is in Schur form, B is in Hessenberg form; = 'B': B is in Schur form, A is in Hessenberg form; = 'S': Both A and B are in Schur form. ULA CHARACTER*1 Indicates whether A is in upper or lower Schur form or upper or lower Hessenberg form as follows: = 'U': A is in upper Hessenberg form if ABSCHU = 'B' and upper Schur form otherwise; = 'L': A is in lower Hessenberg form if ABSCHU = 'B' and lower Schur form otherwise. ULB CHARACTER*1 Indicates whether B is in upper or lower Schur form or upper or lower Hessenberg form as follows: = 'U': B is in upper Hessenberg form if ABSCHU = 'A' and upper Schur form otherwise; = 'L': B is in lower Hessenberg form if ABSCHU = 'A' and lower Schur form otherwise.

N (input) INTEGER The order of the matrix A. N >= 0. M (input) INTEGER The order of the matrix B. M >= 0. A (input) DOUBLE PRECISION array, dimension (LDA,N) The leading N-by-N part of this array must contain the coefficient matrix A of the equation. LDA INTEGER The leading dimension of array A. LDA >= MAX(1,N). B (input) DOUBLE PRECISION array, dimension (LDB,M) The leading M-by-M part of this array must contain the coefficient matrix B of the equation. LDB INTEGER The leading dimension of array B. LDB >= MAX(1,M). C (input/output) DOUBLE PRECISION array, dimension (LDC,M) On entry, the leading N-by-M part of this array must contain the coefficient matrix C of the equation. On exit, if INFO = 0, the leading N-by-M part of this array contains the solution matrix X of the problem. LDC INTEGER The leading dimension of array C. LDC >= MAX(1,N).

TOL DOUBLE PRECISION The tolerance to be used to test for near singularity in the Sylvester equation. If the user sets TOL > 0, then the given value of TOL is used as a lower bound for the reciprocal condition number; a matrix whose estimated condition number is less than 1/TOL is considered to be nonsingular. If the user sets TOL <= 0, then a default tolerance, defined by TOLDEF = EPS, is used instead, where EPS is the machine precision (see LAPACK Library routine DLAMCH). This parameter is not referenced if ABSCHU = 'S', ULA = 'U', and ULB = 'U'.

IWORK INTEGER array, dimension (2*MAX(M,N)) This parameter is not referenced if ABSCHU = 'S', ULA = 'U', and ULB = 'U'. DWORK DOUBLE PRECISION array, dimension (LDWORK) This parameter is not referenced if ABSCHU = 'S', ULA = 'U', and ULB = 'U'. LDWORK INTEGER The length of the array DWORK. LDWORK = 0, if ABSCHU = 'S', ULA = 'U', and ULB = 'U'; LDWORK = 2*MAX(M,N)*(4 + 2*MAX(M,N)), otherwise.

INFO INTEGER = 0: successful exit; < 0: if INFO = -i, the i-th argument had an illegal value; = 1: if a (numerically) singular matrix T was encountered during the computation of the solution matrix X. That is, the estimated reciprocal condition number of T is less than or equal to TOL.

Matrices A and B are assumed to be in (upper or lower) Hessenberg or Schur form (with at least one of them in Schur form). The solution matrix X is then computed by rows or columns via the back substitution scheme proposed by Golub, Nash and Van Loan (see [1]), which involves the solution of triangular systems of equations that are constructed recursively and which may be nearly singular if A and -B have close eigenvalues. If near singularity is detected, then the routine returns with the Error Indicator (INFO) set to 1.

[1] Golub, G.H., Nash, S. and Van Loan, C.F. A Hessenberg-Schur method for the problem AX + XB = C. IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.

2 2 The algorithm requires approximately 5M N + 0.5MN operations in 2 2 the worst case and 2.5M N + 0.5MN operations in the best case (where M is the order of the matrix in Hessenberg form and N is the order of the matrix in Schur form) and is mixed stable (see [1]).

None

**Program Text**

* SB04ND EXAMPLE PROGRAM TEXT * Copyright (c) 2002-2017 NICONET e.V. * * .. Parameters .. INTEGER NIN, NOUT PARAMETER ( NIN = 5, NOUT = 6 ) INTEGER NMAX, MMAX PARAMETER ( NMAX = 20, MMAX = 20 ) INTEGER LDA, LDB, LDC PARAMETER ( LDA = NMAX, LDB = MMAX, LDC = NMAX ) INTEGER LDWORK PARAMETER ( LDWORK = 2*( MAX( NMAX,MMAX ) )* $ ( 4+2*( MAX( NMAX,MMAX ) ) ) ) INTEGER LIWORK PARAMETER ( LIWORK = 2*MAX( NMAX,MMAX ) ) * .. Local Scalars .. DOUBLE PRECISION TOL INTEGER I, INFO, J, M, N CHARACTER*1 ABSCHU, ULA, ULB * .. Local Arrays .. DOUBLE PRECISION A(LDA,NMAX), B(LDB,MMAX), C(LDC,MMAX), $ DWORK(LDWORK) INTEGER IWORK(LIWORK) * .. External Subroutines .. EXTERNAL SB04ND * .. Intrinsic Functions .. INTRINSIC MAX * .. Executable Statements .. * WRITE ( NOUT, FMT = 99999 ) * Skip the heading in the data file and read the data. READ ( NIN, FMT = '()' ) READ ( NIN, FMT = * ) N, M, TOL, ULA, ULB, ABSCHU IF ( N.LT.0 .OR. N.GT.NMAX ) THEN WRITE ( NOUT, FMT = 99995 ) N ELSE READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N ) IF ( M.LT.0 .OR. M.GT.MMAX ) THEN WRITE ( NOUT, FMT = 99994 ) M ELSE READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,M ) READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,M ), I = 1,N ) * Find the solution matrix X. CALL SB04ND( ABSCHU, ULA, ULB, N, M, A, LDA, B, LDB, C, $ LDC, TOL, IWORK, DWORK, LDWORK, INFO ) * IF ( INFO.NE.0 ) THEN WRITE ( NOUT, FMT = 99998 ) INFO ELSE WRITE ( NOUT, FMT = 99997 ) DO 20 I = 1, N WRITE ( NOUT, FMT = 99996 ) ( C(I,J), J = 1,M ) 20 CONTINUE END IF END IF END IF STOP * 99999 FORMAT (' SB04ND EXAMPLE PROGRAM RESULTS',/1X) 99998 FORMAT (' INFO on exit from SB04ND = ',I2) 99997 FORMAT (' The solution matrix X is ') 99996 FORMAT (20(1X,F8.4)) 99995 FORMAT (/' N is out of range.',/' N = ',I5) 99994 FORMAT (/' M is out of range.',/' M = ',I5) END

SB04ND EXAMPLE PROGRAM DATA 5 3 0.0 U U B 17.0 24.0 1.0 8.0 15.0 23.0 5.0 7.0 14.0 16.0 0.0 6.0 13.0 20.0 22.0 0.0 0.0 19.0 21.0 3.0 0.0 0.0 0.0 2.0 9.0 8.0 1.0 6.0 0.0 5.0 7.0 0.0 9.0 2.0 62.0 -12.0 26.0 59.0 -10.0 31.0 70.0 -6.0 9.0 35.0 31.0 -7.0 36.0 -15.0 7.0

SB04ND EXAMPLE PROGRAM RESULTS The solution matrix X is 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 1.0000 1.0000 -1.0000 2.0000 -2.0000 1.0000