MB04BD

Eigenvalues of a real skew-Hamiltonian/Hamiltonian pencil

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the eigenvalues of a real N-by-N skew-Hamiltonian/
  Hamiltonian pencil aS - bH with

        (  A  D  )         (  C  V  )
    S = (        ) and H = (        ).                           (1)
        (  E  A' )         (  W -C' )

  Optionally, if JOB = 'T', decompositions of S and H will be
  computed via orthogonal transformations Q1 and Q2 as follows:

                    (  Aout  Dout  )
    Q1' S J Q1 J' = (              ),
                    (   0    Aout' )

                    (  Bout  Fout  )
    J' Q2' J S Q2 = (              ) =: T,                       (2)
                    (   0    Bout' )

               (  C1out  Vout  )            (  0  I  )
    Q1' H Q2 = (               ), where J = (        )
               (  0     C2out' )            ( -I  0  )

  and Aout, Bout, C1out are upper triangular, C2out is upper quasi-
  triangular and Dout and Fout are skew-symmetric. The notation M'
  denotes the transpose of the matrix M.
  Optionally, if COMPQ1 = 'I' or COMPQ1 = 'U', then the orthogonal
  transformation matrix Q1 will be computed.
  Optionally, if COMPQ2 = 'I' or COMPQ2 = 'U', then the orthogonal
  transformation matrix Q2 will be computed.

Specification
      SUBROUTINE MB04BD( JOB, COMPQ1, COMPQ2, N, A, LDA, DE, LDDE, C1,
     $                   LDC1, VW, LDVW, Q1, LDQ1, Q2, LDQ2, B, LDB, F,
     $                   LDF, C2, LDC2, ALPHAR, ALPHAI, BETA, IWORK,
     $                   LIWORK, DWORK, LDWORK, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ1, COMPQ2, JOB
      INTEGER            INFO, LDA, LDB, LDC1, LDC2, LDDE, LDF, LDQ1,
     $                   LDQ2, LDVW, LDWORK, LIWORK, N
C     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
     $                   B( LDB, * ), BETA( * ), C1( LDC1, * ),
     $                   C2( LDC2, * ), DE( LDDE, * ), DWORK( * ),
     $                   F( LDF, * ), Q1( LDQ1, * ), Q2( LDQ2, * ),
     $                   VW( LDVW, * )

Arguments

Mode Parameters

  JOB     CHARACTER*1
          Specifies the computation to be performed, as follows:
          = 'E': compute the eigenvalues only; S and H will not
                 necessarily be transformed as in (2).
          = 'T': put S and H into the forms in (2) and return the
                 eigenvalues in ALPHAR, ALPHAI and BETA.

  COMPQ1  CHARACTER*1
          Specifies whether to compute the orthogonal transformation
          matrix Q1, as follows:
          = 'N':  Q1 is not computed;
          = 'I':  the array Q1 is initialized internally to the unit
                  matrix, and the orthogonal matrix Q1 is returned;
          = 'U':  the array Q1 contains an orthogonal matrix Q on
                  entry, and the product Q*Q1 is returned, where Q1
                  is the product of the orthogonal transformations
                  that are applied to the pencil aS - bH to reduce
                  S and H to the forms in (2), for COMPQ1 = 'I'.

  COMPQ2  CHARACTER*1
          Specifies whether to compute the orthogonal transformation
          matrix Q2, as follows:
          = 'N':  Q2 is not computed;
          = 'I':  on exit, the array Q2 contains the orthogonal
                  matrix Q2;
          = 'U':  on exit, the array Q2 contains the matrix product
                  J*Q*J'*Q2, where Q2 is the product of the
                  orthogonal transformations that are applied to
                  the pencil aS - bH to reduce S and H to the forms
                  in (2), for COMPQ2 = 'I'.
                  Setting COMPQ2 <> 'N' assumes COMPQ2 = COMPQ1.

Input/Output Parameters
  N       (input) INTEGER
          The order of the pencil aS - bH.  N >= 0, even.

  A       (input/output) DOUBLE PRECISION array, dimension
                         (LDA, N/2)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix A.
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix Aout; otherwise, it contains the
          upper triangular matrix A obtained just before the
          application of the periodic QZ algorithm.

  LDA     INTEGER
          The leading dimension of the array A.  LDA >= MAX(1, N/2).

  DE      (input/output) DOUBLE PRECISION array, dimension
                         (LDDE, N/2+1)
          On entry, the leading N/2-by-N/2 strictly lower triangular
          part of this array must contain the strictly lower
          triangular part of the skew-symmetric matrix E, and the
          N/2-by-N/2 strictly upper triangular part of the submatrix
          in the columns 2 to N/2+1 of this array must contain the
          strictly upper triangular part of the skew-symmetric
          matrix D.
          The entries on the diagonal and the first superdiagonal of
          this array need not be set, but are assumed to be zero.
          On exit, if JOB = 'T', the leading N/2-by-N/2 strictly
          upper triangular part of the submatrix in the columns
          2 to N/2+1 of this array contains the strictly upper
          triangular part of the skew-symmetric matrix Dout.
          If JOB = 'E', the leading N/2-by-N/2 strictly upper
          triangular part of the submatrix in the columns 2 to N/2+1
          of this array contains the strictly upper triangular part
          of the skew-symmetric matrix D just before the application
          of the periodic QZ algorithm. The remaining entries are
          meaningless.

  LDDE    INTEGER
          The leading dimension of the array DE.
          LDDE >= MAX(1, N/2).

  C1      (input/output) DOUBLE PRECISION array, dimension
                         (LDC1, N/2)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix C1 = C.
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix C1out; otherwise, it contains the
          upper triangular matrix C1 obtained just before the
          application of the periodic QZ algorithm.

  LDC1    INTEGER
          The leading dimension of the array C1.
          LDC1 >= MAX(1, N/2).

  VW      (input/output) DOUBLE PRECISION array, dimension
                         (LDVW, N/2+1)
          On entry, the leading N/2-by-N/2 lower triangular part of
          this array must contain the lower triangular part of the
          symmetric matrix W, and the N/2-by-N/2 upper triangular
          part of the submatrix in the columns 2 to N/2+1 of this
          array must contain the upper triangular part of the
          symmetric matrix V.
          On exit, if JOB = 'T', the N/2-by-N/2 part in the columns
          2 to N/2+1 of this array contains the matrix Vout.
          If JOB = 'E', the N/2-by-N/2 part in the columns 2 to
          N/2+1 of this array contains the matrix V just before the
          application of the periodic QZ algorithm.

  LDVW    INTEGER
          The leading dimension of the array VW.
          LDVW >= MAX(1, N/2).

  Q1      (input/output) DOUBLE PRECISION array, dimension (LDQ1, N)
          On entry, if COMPQ1 = 'U', then the leading N-by-N part of
          this array must contain a given matrix Q, and on exit,
          the leading N-by-N part of this array contains the product
          of the input matrix Q and the transformation matrix Q1
          used to transform the matrices S and H.
          On exit, if COMPQ1 = 'I', then the leading N-by-N part of
          this array contains the orthogonal transformation matrix
          Q1.
          If COMPQ1 = 'N', this array is not referenced.

  LDQ1    INTEGER
          The leading dimension of the array Q1.
          LDQ1 >= 1,         if COMPQ1 = 'N';
          LDQ1 >= MAX(1, N), if COMPQ1 = 'I' or COMPQ1 = 'U'.

  Q2      (output) DOUBLE PRECISION array, dimension (LDQ2, N)
          On exit, if COMPQ2 = 'U', then the leading N-by-N part of
          this array contains the product of the matrix J*Q*J' and
          the transformation matrix Q2 used to transform the
          matrices S and H.
          On exit, if COMPQ2 = 'I', then the leading N-by-N part of
          this array contains the orthogonal transformation matrix
          Q2.
          If COMPQ2 = 'N', this array is not referenced.

  LDQ2    INTEGER
          The leading dimension of the array Q2.
          LDQ2 >= 1,         if COMPQ2 = 'N';
          LDQ2 >= MAX(1, N), if COMPQ2 = 'I' or COMPQ2 = 'U'.

  B       (output) DOUBLE PRECISION array, dimension (LDB, N/2)
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix Bout; otherwise, it contains the
          upper triangular matrix B obtained just before the
          application of the periodic QZ algorithm.

  LDB     INTEGER
          The leading dimension of the array B.  LDB >= MAX(1, N/2).

  F       (output) DOUBLE PRECISION array, dimension (LDF, N/2)
          On exit, if JOB = 'T', the leading N/2-by-N/2 strictly
          upper triangular part of this array contains the strictly
          upper triangular part of the skew-symmetric matrix Fout.
          If JOB = 'E', the leading N/2-by-N/2 strictly upper
          triangular part of this array contains the strictly upper
          triangular part of the skew-symmetric matrix F just before
          the application of the periodic QZ algorithm.
          The entries on the leading N/2-by-N/2 lower triangular
          part of this array are not referenced.

  LDF     INTEGER
          The leading dimension of the array F.  LDF >= MAX(1, N/2).

  C2      (output) DOUBLE PRECISION array, dimension (LDC2, N/2)
          On exit, if JOB = 'T', the leading N/2-by-N/2 part of this
          array contains the matrix C2out; otherwise, it contains
          the upper Hessenberg matrix C2 obtained just before the
          application of the periodic QZ algorithm.

  LDC2    INTEGER
          The leading dimension of the array C2.
          LDC2 >= MAX(1, N/2).

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N/2)
          The real parts of each scalar alpha defining an eigenvalue
          of the pencil aS - bH.

  ALPHAI  (output) DOUBLE PRECISION array, dimension (N/2)
          The imaginary parts of each scalar alpha defining an
          eigenvalue of the pencil aS - bH.
          If ALPHAI(j) is zero, then the j-th eigenvalue is real.

  BETA    (output) DOUBLE PRECISION array, dimension (N/2)
          The scalars beta that define the eigenvalues of the pencil
          aS - bH.
          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
          beta = BETA(j) represent the j-th eigenvalue of the pencil
          aS - bH, in the form lambda = alpha/beta. Since lambda may
          overflow, the ratios should not, in general, be computed.
          Due to the skew-Hamiltonian/Hamiltonian structure of the
          pencil, for every eigenvalue lambda, -lambda is also an
          eigenvalue, and thus it has only to be saved once in
          ALPHAR, ALPHAI and BETA.
          Specifically, only eigenvalues with imaginary parts
          greater than or equal to zero are stored; their conjugate
          eigenvalues are not stored. If imaginary parts are zero
          (i.e., for real eigenvalues), only positive eigenvalues
          are stored. The remaining eigenvalues have opposite signs.
          As a consequence, pairs of complex eigenvalues, stored in
          consecutive locations, are not complex conjugate.

Workspace
  IWORK   INTEGER array, dimension (LIWORK)
          On exit, if INFO = 3, IWORK(1) contains the number of
          possibly inaccurate eigenvalues, q <= N/2, and IWORK(2),
          ..., IWORK(q+1) indicate their indices. Specifically, a
          positive value is an index of a real or purely imaginary
          eigenvalue, corresponding to a 1-by-1 block, while the
          absolute value of a negative entry in IWORK is an index to
          the first eigenvalue in a pair of consecutively stored
          eigenvalues, corresponding to a 2-by-2 block. A 2-by-2
          block may have two complex, two real, two purely
          imaginary, or one real and one purely imaginary
          eigenvalues.
          For i = q+2, ..., 2*q+1, IWORK(i) contains a pointer to
          the starting location in DWORK of the i-th quadruple of
          1-by-1 blocks, if IWORK(i-q) > 0, or 2-by-2 blocks,
          if IWORK(i-q) < 0.
          IWORK(2*q+2) contains the number s of finite eigenvalues
          corresponding to the 1-by-1 blocks, and IWORK(2*q+3)
          contains the number t of the 2-by-2 blocks.
          If INFO = 0, then q = 0.

  LIWORK  INTEGER
          The dimension of the array IWORK.
          LIWORK >= MAX(N+12, 2*N+3).

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0 or INFO = 3, DWORK(1) returns the
          optimal LDWORK, and DWORK(2), ..., DWORK(5) contain the
          Frobenius norms of the factors of the formal matrix
          product used by the algorithm; in addition, DWORK(6), ...,
          DWORK(5+4*s) contain the s quadruple values corresponding
          to the used 1-by-1 blocks. Their eigenvalues are finite
          real and purely imaginary. (Such an eigenvalue is obtained
          from -i*sqrt(a1*a3/a2/a4), but always taking a positive
          sign, where a1, ..., a4 are the corresponding quadruple
          values.)
          Moreover, DWORK(6+4*s), ..., DWORK(5+4*s+16*t) contain the
          t groups of quadruple 2-by-2 matrices corresponding to the
          used 2-by-2 blocks. Their eigenvalue pairs are finite,
          either complex, or placed on the real and imaginary axes.
          (Such an eigenvalue pair is obtained from the eigenvalues
          of the matrix product A1*inv(A2)*A3*inv(A4), where A1,
          ..., A4 define the corresponding 2-by-2 matrix quadruple;
          such matrix products are not evaluated.)
          On exit, if INFO = -27, DWORK(1) returns the minimum
          value of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          If JOB = 'E' and COMPQ1 = 'N' and COMPQ2 = 'N',
             LDWORK >= N**2 + MAX(L,36);
          if JOB = 'T' or COMPQ1 <> 'N' or COMPQ2 <> 'N',
             LDWORK >= 2*N**2 + MAX(L,36);
          where
             L = 4*N + 4, if N/2 is even, and
             L = 4*N,     if N/2 is odd.
          For good performance LDWORK should generally be larger.

Error Indicator
  INFO    INTEGER
          = 0: succesful exit;
          < 0: if INFO = -i, the i-th argument had an illegal value;
          = 1: problem during computation of the eigenvalues;
          = 2: periodic QZ algorithm did not converge in the SLICOT
               Library subroutine MB03BD;
          = 3: some eigenvalues might be inaccurate, and details can
               be found in IWORK and DWORK. This is a warning.

Method
  The algorithm uses Givens rotations and Householder reflections to
  annihilate elements in S, T, and H such that A, B, and C1 are
  upper triangular and C2 is upper Hessenberg. Finally, the periodic
  QZ algorithm is applied to transform C2 to upper quasi-triangular
  form while A, B, and C1 stay in upper triangular form.
  See also page 27 in [1] for more details.

References
  [1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
      Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
      Eigenproblems.
      Tech. Rep., Technical University Chemnitz, Germany,
      Nov. 2007.

Numerical Aspects
                                                            3
  The algorithm is numerically backward stable and needs O(N ) real
  floating point operations.

Further Comments
  None
Example

Program Text

*     MB04BD EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER            NIN, NOUT
      PARAMETER          ( NIN = 5, NOUT = 6 )
      INTEGER            NMAX
      PARAMETER          ( NMAX = 50 )
      INTEGER            LDA, LDB, LDC1, LDC2, LDDE, LDF, LDQ1, LDQ2,
     $                   LDVW, LDWORK, LIWORK
      PARAMETER          (  LDA = NMAX/2,  LDB = NMAX/2, LDC1 = NMAX/2,
     $                     LDC2 = NMAX/2, LDDE = NMAX/2,  LDF = NMAX/2,
     $                     LDQ1 = NMAX, LDQ2 = NMAX, LDVW = NMAX/2,
     $                     LDWORK = 2*NMAX*NMAX + MAX( 4*NMAX, 36 ),
     $                     LIWORK = MAX( NMAX + 12, 2*NMAX + 3 ) )
*
*     .. Local Scalars ..
      CHARACTER          COMPQ1, COMPQ2, JOB
      INTEGER            I, INFO, J, M, N
*
*     .. Local Arrays ..
      INTEGER            IWORK( LIWORK )
      DOUBLE PRECISION   A( LDA, NMAX/2 ), ALPHAI( NMAX/2 ),
     $                   ALPHAR( NMAX/2 ), B( LDB, NMAX/2 ),
     $                   BETA( NMAX/2 ), C1( LDC1, NMAX/2 ),
     $                   C2( LDC2, NMAX/2 ), DE( LDDE, NMAX/2+1 ),
     $                   DWORK( LDWORK ),  F( LDF, NMAX/2 ),
     $                   Q1( LDQ1, NMAX ), Q2( LDQ2, NMAX ),
     $                   VW( LDVW, NMAX/2+1 )
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           MB04BD
*
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*
*     .. Executable Statements ..
*
      WRITE( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read in the data.
      READ( NIN, FMT = * )
      READ( NIN, FMT = * ) JOB, COMPQ1, COMPQ2, N
      IF( N.LT.0 .OR. N.GT.NMAX ) THEN
         WRITE( NOUT, FMT = 99998 ) N
      ELSE
         M = N/2
         READ( NIN, FMT = * ) ( (  A( I, J ), J = 1, M   ), I = 1, M )
         READ( NIN, FMT = * ) ( ( DE( I, J ), J = 1, M+1 ), I = 1, M )
         READ( NIN, FMT = * ) ( ( C1( I, J ), J = 1, M   ), I = 1, M )
         READ( NIN, FMT = * ) ( ( VW( I, J ), J = 1, M+1 ), I = 1, M )
*        Compute the eigenvalues of a real skew-Hamiltonian/Hamiltonian
*        pencil.
         CALL MB04BD( JOB, COMPQ1, COMPQ2, N, A, LDA, DE, LDDE, C1,
     $                LDC1, VW, LDVW, Q1, LDQ1, Q2, LDQ2, B, LDB, F,
     $                LDF, C2, LDC2, ALPHAR, ALPHAI, BETA, IWORK,
     $                LIWORK, DWORK, LDWORK, INFO )
*
         IF( INFO.NE.0 ) THEN
            WRITE( NOUT, FMT = 99997 ) INFO
         ELSE
            WRITE( NOUT, FMT = 99996 )
            DO 10 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( A( I, J ), J = 1, M )
   10       CONTINUE
            WRITE( NOUT, FMT = 99994 )
            DO 20 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( DE( I, J ), J = 2, M+1 )
   20       CONTINUE
            WRITE( NOUT, FMT = 99993 )
            DO 30 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( B( I, J ), J = 1, M )
   30       CONTINUE
            WRITE( NOUT, FMT = 99992 )
            DO 40 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( F( I, J ), J = 1, M )
   40       CONTINUE
            WRITE( NOUT, FMT = 99991 )
            DO 50 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( C1( I, J ), J = 1, M )
   50       CONTINUE
            WRITE( NOUT, FMT = 99990 )
            DO 60 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( C2( I, J ), J = 1, M )
   60       CONTINUE
            WRITE( NOUT, FMT = 99989 )
            DO 70 I = 1, M
               WRITE( NOUT, FMT = 99995 ) ( VW( I, J ), J = 2, M+1 )
   70       CONTINUE
            WRITE( NOUT, FMT = 99988 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAR( I ), I = 1, M )
            WRITE( NOUT, FMT = 99987 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAI( I ), I = 1, M )
            WRITE( NOUT, FMT = 99986 )
            WRITE( NOUT, FMT = 99995 ) (   BETA( I ), I = 1, M )
            WRITE( NOUT, FMT = 99985 )
            IF( .NOT.LSAME( COMPQ1, 'N' ) ) THEN
               DO 80 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( Q1( I, J ), J = 1, N )
   80          CONTINUE
            END IF
            IF( .NOT.LSAME( COMPQ2, 'N' ) ) THEN
               WRITE( NOUT, FMT = 99984 )
               DO 90 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( Q2( I, J ), J = 1, N )
   90          CONTINUE
            END IF
         END IF
      END IF
      STOP
*
99999 FORMAT( 'MB04BD EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT( 'INFO on exit from MB04BD = ', I2 )
99996 FORMAT( 'The matrix A on exit is ' )
99995 FORMAT( 50( 1X, F8.4 ) )
99994 FORMAT( 'The matrix D on exit is ' )
99993 FORMAT( 'The matrix B on exit is ' )
99992 FORMAT( 'The matrix F on exit is ' )
99991 FORMAT( 'The matrix C1 on exit is ' )
99990 FORMAT( 'The matrix C2 on exit is ' )
99989 FORMAT( 'The matrix V on exit is ' )
99988 FORMAT( 'The vector ALPHAR is ' )
99987 FORMAT( 'The vector ALPHAI is ' )
99986 FORMAT( 'The vector BETA is ' )
99985 FORMAT( 'The matrix Q1 is ' )
99984 FORMAT( 'The matrix Q2 is ' )
      END
Program Data
MB04BD EXAMPLE PROGRAM DATA
   T   I   I   8
   3.1472   1.3236   4.5751   4.5717
   4.0579  -4.0246   4.6489  -0.1462
  -3.7301  -2.2150  -3.4239   3.0028
   4.1338   0.4688   4.7059  -3.5811
   0.0000   0.0000  -1.5510  -4.5974  -2.5127
   3.5071   0.0000   0.0000   1.5961   2.4490  
  -3.1428   2.5648   0.0000   0.0000  -0.0596 
   3.0340   2.4892  -1.1604   0.0000   0.0000
   0.6882  -3.3782  -3.3435   1.8921
  -0.3061   2.9428   1.0198   2.4815
  -4.8810  -1.8878  -2.3703  -0.4946
  -1.6288   0.2853   1.5408  -4.1618
  -2.4013  -2.7102   0.3834  -3.9335   3.1730
  -3.1815  -2.3620   4.9613   4.6190   3.6869
   3.6929   0.7970   0.4986  -4.9537  -4.1556
   3.5303   1.2206  -1.4905   0.1325  -1.0022

Program Results
MB04BD EXAMPLE PROGRAM RESULTS
The matrix A on exit is 
  -4.7460   4.1855   3.2696  -0.2244
   0.0000   6.4157   2.8287   1.4553
   0.0000   0.0000   7.4626   1.5726
   0.0000   0.0000   0.0000   8.8702
The matrix D on exit is 
   0.0000  -1.3137  -6.3615  -0.8940
   0.0000   0.0000   1.0704  -0.0659
   4.4324   0.0000   0.0000  -0.6922
   0.5254   1.6653   0.0000   0.0000
The matrix B on exit is 
  -6.4937  -2.1982  -1.3881   1.3477
   0.0000   4.6929   0.6650  -4.1191
   0.0000   0.0000   9.1725   3.4721
   0.0000   0.0000   0.0000   7.2106
The matrix F on exit is 
   0.0000  -1.1367   2.2966  -1.0744
   0.0000   0.0000   3.7875   0.9427
   0.0000   0.0000   0.0000  -4.7136
   0.0000   0.0000   0.0000   0.0000
The matrix C1 on exit is 
   6.9525  -4.9881   2.3661   4.2188
   0.0000   8.5009   0.7182   5.5533
   0.0000   0.0000  -4.6650  -2.8177
   0.0000   0.0000   0.0000   1.5124
The matrix C2 on exit is 
  -5.4562  -2.1348   4.9694  -2.2744
   2.5550  -7.9616   1.1516   3.4912
   0.0000   0.0000   4.8504   0.5046
   0.0000   0.0000   0.0000   4.4394
The matrix V on exit is 
   0.9136   4.1106  -0.0079   3.5789
  -1.1553  -1.4785  -1.5155  -0.8018
  -2.2167   4.8029   1.3645   2.5202
  -1.0994  -0.6144   0.3970   2.0730
The vector ALPHAR is 
   0.8314  -0.8314   0.8131   0.0000
The vector ALPHAI is 
   0.4372   0.4372   0.0000   0.9164
The vector BETA is 
   0.7071   0.7071   1.4142   2.8284
The matrix Q1 is 
  -0.0098   0.1978   0.2402   0.5274   0.1105  -0.0149  -0.1028   0.7759
  -0.6398   0.2356   0.2765  -0.1301  -0.5351  -0.3078   0.2435   0.0373
   0.1766  -0.4781   0.2657  -0.5415   0.0968  -0.4663  -0.0983   0.3741
   0.3207  -0.1980   0.1141   0.0240  -0.1712   0.2630   0.8513   0.1451
  -0.6551  -0.2956  -0.0288  -0.1169   0.5593   0.3381   0.1753   0.1055
  -0.0246  -0.2759   0.2470  -0.1408  -0.4837   0.6567  -0.4042   0.1172
  -0.0772  -0.0121  -0.8394  -0.1852  -0.2673   0.0046   0.0159   0.4282
   0.1442   0.6884   0.1257  -0.5860   0.2110   0.2699   0.0363   0.1657
The matrix Q2 is 
  -0.2891   0.3096   0.6312   0.6498   0.0000   0.0000   0.0000   0.0000
   0.1887   0.1936  -0.3857   0.3664   0.5660   0.1238  -0.2080  -0.5148
  -0.2492  -0.2877  -0.0874   0.1110  -0.1081  -0.2999   0.6800  -0.5207
  -0.7430  -0.0646  -0.4689   0.1556  -0.2401   0.0181  -0.3724   0.0562
  -0.0999  -0.2026  -0.0355   0.0866   0.5587  -0.6625  -0.0114   0.4349
  -0.4357   0.1209   0.0489  -0.2990   0.5094   0.5191   0.3837   0.1661
  -0.2429   0.4131   0.2549  -0.5525   0.0749  -0.3829  -0.2690  -0.4190
   0.0889   0.7439  -0.3960   0.0697  -0.1821  -0.1988   0.3687   0.2616

Return to index