
SLICOT Working Note 2014-1

On BLAS Level-3 Implementations of Common Solvers for
(Quasi-) Triangular Generalized Lyapunov Equations 1

Martin Köhler 2 Jens Saak3

September 2014

1This document presents research results obtained during the development of the SLICOT (Sub-
routine Library in Systems and Control Theory) software. The SLICOT Library and the related
CACSD tools based on SLICOT were partially developed within the Numerics in Control Net-
work (NICONET) funded by the European Community BRITE-EURAM III RTD Thematic Net-
works Programme (contract number BRRT-CT97-5040), see http://www.icm.tu-bs.de/NICONET.
SLICOT can be used free of charge by academic users, see http://www.slicot.org, for solving
analysis and synthesis problems of modern and robust control. This report is available from
www.slicot.org/REPORTS/SLWN2014-1.pdf

2Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;
Email: koehlerm@mpi-magdeburg.mpg.de

3Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany;
Email saak@mpi-magdeburg.mpg.de

http://www.icm.tu-bs.de/NICONET
http://www.slicot.org
www.slicot.org/REPORTS/SLWN2014-1.pdf
koehlerm@mpi-magdeburg.mpg.de
saak@mpi-magdeburg.mpg.de

Abstract

The solutions of Lyapunov and generalized Lyapunov equations are a key player in many applications
in systems and control theory. Their stable numerical computation, when the full solution is sought,
is considered solved since the seminal work of Bartels and Stewart [1]. A number of variants of their
algorithm have been proposed, but none of them goes beyond BLAS level-2 style implementation. On
modern computers, however, the formulation of BLAS level-3 type implementations is crucial to enable
optimal usage of cache hierarchies and modern block scheduling methods based on directed acyclic graphs
describing the interdependence of single block computations. Our contribution closes this gap by a
transformation of the aforementioned level-2 variants to level-3 versions and a comparison on a standard
multicore machine.

Keywords: Lyapunov Equation, Level-3 BLAS

1 Introduction

Lyapunov equations play an important role in systems and control theory. They are, e.g., a key ingredient
in model order reduction, like Balanced Truncation [10], or part of the Newton Method for the Alge-
braic Riccati Equation [5]. Nowadays many practical situations require the solution of the generalized
continuous-time Lyapunov equation

ATXE + ETXA = Y (1)

or the generalized discrete-time Lyapunov equation, the so called generalized Stein equation

ATXA− ETXE = Y, (2)

where A, E, X and Y are real n × n matrices. Furthermore we assume a symmetric right hand side Y
such that the solution X is symmetric [11].

In order to recall the solvability conditions for both matrix equations we use that both equations are
only a special case of the generalized Sylvester equation

MTUN +OTUP = Q. (3)

Since (3) is linear in the entries of U , it can be reformulated as a linear system [13]:(
NT ⊗MT + PT ⊗OT

)
vec(U) = vec(Q), (4)

where ⊗ denotes the Kronecker product of two matrices and vec(·) the column-wise concatenation of an
n×m matrix to a vector of length nm.

Using this formulation Chu [2] showed that Equation (3), and respectively Equation (4) are uniquely
solvable if and only if the matrix pencils (M,O) and (P,N) are regular and have disjoint spectra. In the
context of the generalized Lyapunov equation [11] these conditions simplify to: (1) has a unique solution
if and only if λi +λj 6= 0 for any two eigenvalues λi and λj of (A,E). In the case of the generalized Stein
equation we get: Equation (2) is uniquely solvable if and only if λiλj 6= 1 for any two eigenvalues λi and
λj of (A,E) (under the assumption 0 · ∞ = 1). As a direct consequence, if one of the matrices A and E
is singular, the corresponding linear system (4) is singular, too.

Beside this theoretical background we brie�y mention several algorithms for the solution of the gen-
eralized Lyapunov equation. The �rst and trivial idea is to solve Equation (1) through its reformulation
to the Kronecker system (4). This obviously leads to very large dense linear systems. In avoidance of
the resulting huge runtime complexity we have to use specialized Sylvester equation solvers that uses
the special structure of the Kronecker product. The most popular variants are the Gardiner and Laub
modi�cation [3] of the Bartels-Stewart algorithm [1] and the generalized Schur algorithm by Kågström
and Westin [7]. Focusing on modern computer architectures Kågström and Poromaa [6] developed a fast
level-3 BLAS implementation of the generalized Schur algorithm on top of LAPACK. All these techniques
do not care about the symmetric structure of the Lyapunov equation and so they can not guarantee the
symmetry of the solution X from a numerical point of view.

A variant of the Bartels-Stewart algorithm which works directly on Equation (1) or (2) was presented
by Penzl in 1997 [11]. The algorithm preserves the symmetry of the solution X, but in contrast to
the previously mentioned Sylvester solvers, this algorithm only employs BLAS level-2 operations. This
prevents an e�cient usage of modern computer architectures and their cache hierarchy. Furthermore
level-2 BLAS operations are not well suited for massive parallel accelerators like Nvidia® CUDA devices
or the Intel® Xeon® Phi. Regardless of this fact, this implementation is part of the SLICOT [12]
software package and the backend behind the generalized Lyapunov equation solver in MATLAB® or
GNU Octave.

In the following sections we discuss a reformulation of Penzl's variant of the Bartels-Stewart algorithm
into a level-3 BLAS enabled version. In Section 5 we show the performance of our implementation and
the comparability of the results.

1

2 The Bartels-Stewart Algorithm for the Generalized Lyapunov
Equation

First, we recall Penzl's extension [11] to the Bartels-Stewart algorithm [1]. Based on this extension we
point out where to modify the algorithm to end up with a level-3 BLAS implementation. The optimal
block size is determined later in Section 5 by a set of benchmarks. We restrict our presentation to the
generalized Lyapunov equation (1). The derivation of the algorithm for the generalized Stein equation
works analogously by exchanging the roles of A and E at the corresponding positions.

Like in the original Bartels-Stewart algorithm we have to transform Equation (1) to an equivalent
but more structured representation. Therefore, we determine the generalized Schur form (As, Es) of the
matrix pencil (A,E) by means of two orthogonal matrices Q and Z (e.g. using the QZ algorithm [9]):

A = QTAsZ,

E = QTEsZ. (5)

Now As is a quasi upper triangular matrix and Es is an upper triangular one. Inserting the decompo-
sition (5) in the generalized Lyapunov equation (1) and multiplying from the left with Z and from the
right by ZT leads to

AT
s QXQ

T︸ ︷︷ ︸
Xs

Es + ET
s QXQ

T︸ ︷︷ ︸
Xs

As = ZY ZT︸ ︷︷ ︸
Ys

. (6)

This equation is equivalent to our original Equation (1) and the solution X is restored by:

X = QTXsQ. (7)

We call Equation (6) (quasi-) triangular generalized Lyapunov equation. The triangular structure of
the matrices As and Es allows us to use a Bartels-Stewart like forward substitution scheme. Therefore,
we partition Equation (6) into 1×1 or 2×2 blocks with respect to real eigenvalues or complex eigenvalue
pairs on the diagonal of (As, Es). This results in a p by p block representation of all matrices:

As =

A11 · · · A1p

. . .
...

0 App

 , Es =

E11 · · · E1p

. . .
...

0 Epp

 ,

Xs =

X11 · · · X1p

...
. . .

...
Xp1 · · · Xpp

 , Ys =

Y11 · · · Y1p
...

. . .
...

Yp1 · · · Ypp

 . (8)

Because Xs is symmetric we only have to solve for 1
2p(p + 1) blocks. The remaining blocks are known

by symmetry. This ensures that the solution Xs will be symmetric in contrast to the solution using an
arbitrary Sylvester equation solver mentioned in Section 1. The solution of (6) now gets equal to solving
Sylvester equations

AT
kkXklEll + ET

kkXklAll = Ŷkl (9)

with updated right hand sides Ŷkl:

Ŷkl = Ykl −
k,l∑

i=1,j=1
(i,j)6=(k,l)

(
AT

ikXijEjl + ET
ikXijAjl

)
(10)

for each block Xkl. Resembling the equivalent Kronecker product formulation in (4) Penzl [11] proposed
to compute Xkl by solving (

ET
ll ⊗AT

kk +AT
ll ⊗ ET

kk

)
vec (Xkl) = vec

(
Ŷkl

)
, (11)

2

which is a linear system of size 1, 2 or 4 depending on the size of Akk and All. We solve this for k = 1, . . . , p
and l = k, . . . , p in a row-wise order. After one column is completed the corresponding row is updated
by transposing the column into the row.

Before we analyze this algorithmic idea with respect to the in�uenced BLAS operations, we recall an
e�cient replacement for the Update (10) presented by Penzl [11] as well. We expand the update of Ŷkl
to:

Ŷkl =Ykl −
k∑

i=1

AT
ik

 l−1∑
j=1

XijEjl


︸ ︷︷ ︸
Xi,1:l−1E1:l−1,l

+ET
ik

 l−1∑
j=1

XijAjl


︸ ︷︷ ︸
Xi,1:l−1A1:l−1,l


−

k∑
i=1

(
AT

ikXilEll + ET
ikXilAll

)
.

If we now rearrange this scheme in a way that we update Ŷkl step by step whenever a block Xij in the

formulation above becomes known we can compute Ŷkl in 2k − 1 steps:

Y
(0)
kl = Ykl,

Y
(2i−1)
kl = Y

(2i−2)
kl −AT

ikXi,1:l−1E1:l−1,l − ET
ikXi,1:l−1A1:l−1,l, i = 1, . . . , k (12)

Y
(2i)
kl = Y

(2i−1)
kl −AT

ikXilEll − ET
ikXilAll, i = 1, . . . , k − 1 (13)

Ŷkl = Y
(2k−1)
kl .

This two-step update scheme is applied as follows: First, we have to compute (13) directly after we have

solved for Xil. The remaining update for Y
(2i−1)
kl is performed right before we solve for the corresponding

Ŷkl. This scheme reduces the complexity in contrast to the original formulation (10). The key observation
here is that we have to compute the two matrix products Xi,1:l−1E1:l−1,l and Xi,1:l−1A1:l−1,l only once.

2.1 Derivation of the blocked Algorithm

A detailed look at the obtained algorithm shows us that the assumption of only having 1 × 1 or 2 × 2
blocks is no restriction for the updates of the right hand sides Ŷkl. The formula (10) and its e�ciency
improving reformulation (12) and (13) can be evaluated for an arbitrary block size NB for the partitioning
of the matrices (8) in the (quasi-) triangular Lyapunov equation (6). The only restriction to the block
size NB of a block (k, l) is that its size must be adjusted by ±1 in the case we would split a complex
eigenvalue pair.

The change from 1×1 or 2×2 blocks to a larger block size NB in algorithm proposed by Penzl allows
us to use matrix-matrix products in (12) and (13) instead of only dealing with matrix-vector products and
vector-scalings. The usage of matrix-matrix products and other level-3 BLAS operations is a prerequisite
for the optimal utilization of modern computer architectures. Switching from matrix-vector products
to matrix-matrix products, however, only provides a performance gain if the blocks have su�cient size.
The optimal block size Nopt

B strongly depends on the capabilities of the computer architecture, like cache
size, multi threading, memory hierarchies or vectorization opportunities. For a practical implementation
of the algorithm with other block sizes than 1 × 1 or 2 × 2 this means that the block size NB is a free
parameter and must not be restricted by a smart implementation of any part of the algorithm. The only
allowed variation of the block size is to �t the quasi triangular structure of the matrix A or to �t the
dimension when the algorithm works on the last row or column block.

3

Now the question is why do current implementations only use a block size of 1 or 2? The answer is
obvious in view of the way how the internally arising Sylvester equations (9) are handled. If we allow an
arbitrary block size NB , this inner equation will result in a linear system of size N2

B × N2
B . Regarding

the �op count of the LU decomposition [4] we need 2
3N

6
B �ops to factorize the inner linear system and

2N4
B �ops to do the forward/backward solves.

Example 1. We consider a generalized Lyapunov equation of dimension n = 960 and a block size of
NB = 64, which is used as good choice for many other algorithms in LAPACK. Partitioning the matrices
into blocks of dimension NB = 64 results in a 15 × 15 block matrix. Using the previously presented
algorithm with this block size requires the solution of 120 inner Sylvester equations. Solving one of them
costs around 45 GFlops. Without counting the cost for the update of the right hand side we need 5.4
TFlops only in the internal step. In contrast to this the algorithm with block size 1 needs only 7 GFlops
to compute all the inner equations and the updates of the right hand side [11]. The ratio of 770 between
the necessary �ops of both block sizes cannot be compensated by parallelization or optimized hardware
usage on the same computer.

Example 1 shows us that using the same ideas like Penzl with a freely selectable block size NB

will make the algorithm slower for nearly every choice of NB that will accelerate the right hand side
updates. The only possibility is to �nd a more e�cient replacement for the inner Sylvester equation
solver. Before we discuss di�erent approaches to resolve this problem in Section 3, we present a pseudo
code implementation and the �op count for the forward substitution scheme depending on the block size
NB .

2.2 Outer Algorithm and Flop Count

We have already seen that the Bartels-Stewart algorithm for the Lyapunov equation (6) consists of two
parts. The �rst one is the update scheme for the right hand side and the second one is the solution of the
inner Sylvester equation. At the moment we regard the solution of the inner problem (9) as a black-box.
In this way we denote the Bartels -Stewart algorithm as �outer Algorithm� without any details about the
solution of the inner equations.

If we assume that our matrices (As, Es), Xs and Ys from (8) are partitioned in PB blocks of size NB ,
we are able to compute the solution blocks Xkl in the row-wise way shown in Algorithm 1. The algorithm
only solves for the upper triangular part of Xs and constructs the lower triangular part by symmetry in
Step 4.

The pseudo code in Algorithm 1 already shows how it is implemented in-place by overwriting Ys by
Xs. We only need N2

B �oating point numbers (FPN) of additional memory to compute the matrix-matrix
products in Steps 8, 9, 14 and 15. In the following paragraphs we derive the �op count for Algorithm 1.
Furthermore, we show that the blocked variant is in the same asymptotic runtime class as the version
presented by Penzl, if we use a moderate block size.

Without loss of generality we assume that the dimension n of the Lyapunov equation is a multiple of
the block size NB . Then we have PB = n

NB
, and the Steps 8 and 9 are executed in every iteration except

of the �rst one (k = l = 1), where both steps take the same number of �ops. This leads to a total cost
for these two steps of:

PB∑
k=1

PB∑
l=k

(
8lN3

B − 4kN3
B

)
− 4N3

B︸ ︷︷ ︸
�rst iteration

= 2NB
3PB

3 + 2NB
3PB

2 − 4NB
3. (14)

The cost for solving one inner Sylvester equation (9) depends on the algorithm and the block size used,
therefore, we model it by a function Finner(NB). In Section 3 we derive the Finner for all inner solvers.

4

Algorithm 1 Forward-Substitution for the generalized Lyapunov equation

Input: (As, Es) and Ys partitioned in PB blocks of size NB , like in (8)
Output: Xs solving the (quasi-) triangular Lyapunov equation (6)
1: Xs := Ys

2: for k = 1, . . . , PB do

3: if k > 1 then

4: Xk,1:k−1 := XT
1:k−1,k {Copy the symmetric part.}

5: end if

6: for l = k, . . . , PB do

7: if l > 1 then

8: Xk:l,l := Xk:l,l −AT
k,k:lXk,1:l−1E1:l−1,l

9: Xk:l,l := Xk:l,l − ET
k,k:lXk,1:l−1A1:l−1,l

10: end if

11: Solve AT
k,kX∗El,l + ET

k,kX∗Al,l = Xk,l

12: Xk,l := X∗
13: if k < l then
14: Xk+1:l,l := Xk+1:l,l −AT

k,k+1:lXk,lEl,l

15: Xk+1:l,l := Xk+1:l,l − ET
k,k+1:lXk,lAl,l

16: end if

17: end for

18: end for

Independent of the de�nition of Finner Step 11 costs

PB∑
k=1

PB∑
l=k

Finner(NB) =
1

2
(PB

2 + PB)Finner(NB) (15)

�ops. The remaining update Steps 14 and 15 are executed in every iteration except of the iterations
where l = k. This leads to a cost of

PB∑
k=1

PB∑
l=k

(
4lN3

B − 4kN3
B + 4N3

B

)
−PB · 4N3

B︸ ︷︷ ︸
iterations k = l

=
2

3
NB

3PB
3 + 2NB

3PB
2 − 8

3
NB

3PB (16)

�ops for these two steps. By summing up Equations (14) to (16) we get an overall �op count of

1

2
(P 2

B + PB)Finner(NB) +
8

3
NB

3PB
3 + 4NB

3PB
2 − 4NB

3 − 8

3
NB

3PB

=
1

2
(P 2

B + PB)Finner(NB) +N3
B

(
8

3
P 3
B + 4P 2

B −
8

3
PB − 4

)
. (17)

In the case of NB = 1, PB = n and Finner(1) = 4 this yields the approximately 8
3n

3 �ops reported by
Penzl [11]. Replacing PB in Equation (17) by n

NB
we get

1

2

(
n2

N2
B

+
n

NB

)
Finner(NB) +N3

B

(
8

3

n3

N3
B

+ 4
n2

N2
B

− 8

3

n

NB
− 4

)
=

1

2

(
n2

N2
B

+
n

NB

)
Finner(NB) +

(
8

3
n3 + 4NBn

2 − 8

3
N2

Bn− 4N3
B

)
. (18)

We see that the asymptotic complexity class is not in�uenced by the selected block size NB as long as
NB is of moderate size. Neglecting all lower order terms we get the same asymptotic �op count of 8

3n
3

as long as the solution of the inner Sylvester equation does not get too expensive. A special case is if

5

we consider NB → n. Then we have 4N3
B → 4NBn

2 and 8
3N

2
Bn → 8

3n
3 which means that the �ops

performed by the outer algorithm will go down to 0 and the overall �op count is dominated by Finner.

The �op count analysis showed us that the problem of developing a level-3 BLAS enabled solver for the
Lyapunov equation reduces to �nding a suitable Sylvester equation solver, whose �op count Finner(NB)
only increases moderately with an increasing block size NB .

3 Solution of the inner Sylvester Equations

In the previous Section we showed that the forward substitution scheme presented by Penzl [11] can be
directly used for a level-3 BLAS variant of the Bartels-Stewart algorithm. The only missing part is the
proper treatment of the arising inner Sylvester equations

AT
kkXklEll + ET

kkXklAll = Ŷkl,

or prototypically written

ÂT X̂B̂ + ĈT X̂D̂ = Ŷ , (19)

e�ciently without forming the corresponding Kronecker representation (4). For simplicity we assume
that all matrices (Â, Ĉ) are of dimension n̂ and the matrices (D̂, B̂) are of dimension m̂. The right hand
side Ŷ and the solution X̂ are n̂× m̂ matrices.

We state the following demands on the algorithm, that should be ful�lled to integrate it in the outer
algorithm without an additional overhead:

� The transposition of the matrices Â and Ĉ must be done implicitly without forming their transposes.

� The right hand side Ŷ must be overwritten by the solution X̂ in order to save memory to avoid
additional copy operations in the outer algorithm.

� The matrices Â, B̂, Ĉ and D̂ are used read only so that the outer algorithm need not make backups
of them.

� The algorithm should have at most a cubic �op count such that the solver does not dominate the
overall �op count (18) for moderate block size NB .

The outer algorithm guarantees that the pencils (Â, Ĉ) and (D̂, B̂) are already in generalized Schur form
which we assume for the rest of this section. This property helps us to modify common solvers for the
generalized Sylvester equation (19) in the following subsections. For each of them we determine Finner

for the best and the worst case situation.

If the inner Sylvester equation arises from the generalized Stein equation we have to solve

AT
kkXklAll − ET

kkXklEll = Ŷkl

in every step. This requires only a few changes in the following considerations. The most important one
is that the �rst part of the equation now includes two matrices that may have 2× 2 diagonal blocks. In
the context of the Sylvester equation (19) this can be interpreted as B̂ and D̂ changing their structural
roles. This modi�cation is straight forward and therefore omitted.

6

3.1 An Approach based on Gardiner and Laub

One idea to solve the inner Sylvester equation is a slightly modi�ed version of the Bartels-Stewart approach
by Gardiner et al. [3]. Our modi�cation works straightforward by changing the original algorithm at the
correct positions to satisfy our requirements and the structure of the Sylvester equation. Additionally,
we describe how the involved linear systems are solved e�ciently.

Our outer algorithm guarantees that

ÂT X̂B̂ + ĈT X̂D̂ = Ŷ

has the following structure(
@
@@

)()(
@
@@

)
+

(
@

@@

)()(
@
@@

)
=

()
where the matrices Â and D̂ may have 2× 2 diagonal blocks. This structure allows us to rewrite the k-th
column of Ŷ as

ÂT
k∑

l=1

B̂lkX̂·l + ĈT
k+1∑
l=1

D̂lkX̂·l = Ŷ·k for k = 1, . . . , m̂. (20)

If we now assume that D̂k+1,k = 0, i.e., the diagonal block of D̂ belongs to a real eigenvalue, we can

compute the k-th column of the solution X̂ by

B̂kkÂ
T X̂·k + ÂT

k−1∑
l=1

B̂lkX̂·l + D̂kkĈ
T X̂·k + ĈT

k−1∑
l=1

D̂lkX̂·l = Ŷ·k

(
B̂kkÂ+ D̂kkĈ

)T
X̂·k = Ŷ·k − ÂT

k−1∑
l=1

B̂lkX̂·l − ĈT
k−1∑
l=1

D̂lkX̂·l. (21)

This scheme allows us to solve successively for the columns of the solution X̂·k, for k = 1, . . . , n. In
order to not violate our requirements for the solver we see that we need additional n̂2 FPN memory to
assemble the matrix B̂kkÂ+D̂kkĈ. If both matrices Â and Ĉ are upper triangular, i.e., they have no 2×2
blocks on the diagonal, the system is solved in n̂2 �ops by forward/backward substitution. Otherwise
one has to use a normal LU decomposition or other techniques. A more e�cient way is to eliminate
the sub-diagonal entries by applying Givens rotations to reduce the matrix to upper triangular form.
Afterwards, we use the forward/backward substitution again. This idea needs additional n̂ FPN memory
to store the parameters of the Givens rotations in the worst case.

Now we consider the case, when D̂k+1,k 6= 0. This means the (k + 1)-st column depends on the

solution of column k and vice versa. In this case we have to solve for X̂·k and X̂·k+1 in one step.
Regarding Equation (20) for two consecutive columns k and k + 1 of Ŷ leads us to

(
B̂kkÂ+ D̂kkĈ

)T
X̂·k + D̂k+1,kĈ

T X̂·k+1 = Ŷ·k − ÂT
k−1∑
l=1

B̂lkX̂·l − ĈT
k−1∑
l=1

D̂lkX̂·l = Ȳ·k

and (
B̂k,k+1Â+ D̂k,k+1Ĉ

)T
X̂·k +

(
B̂k+1,k+1Â+ D̂k+1,k+1Ĉ

)T
X̂·k+1

= Ŷ·k+1 − ÂT
k−1∑
l=1

B̂lkX̂·l − ĈT
k−1∑
l=1

D̂lkX̂·l = Ȳ·k+1.

7

These two equations are combined into a linear system of size 2n̂× 2n̂:(
B̂kkÂ+ D̂kkĈ B̂k,k+1Â+ D̂k,k+1Ĉ

D̂k+1,kĈ B̂k+1,k+1Â+ D̂k+1,k+1Ĉ

)T (
X̂·k
X̂·k+1

)
=

(
Ȳ·k
Ȳ·k+1

)
(22)

to compute X̂k and X̂k+1 at once. The assembly of the system matrix needs 4n̂2 FPN extra memory.
The system can either be solved by an LU approach, or alternatively by a more e�cient but also more
complicated scheme.

The e�cient solution works in two steps. First we reorder the rows and the columns of the matrix from
its natural order (1, 2, . . . , 2n̂−1, 2n̂) to (1, 1 + n̂, 2, 2 + n̂, . . . , n̂, 2n̂). This reordering converts the matrix
from Equation (22) to block upper triangular form with blocks of size 2× 2 or 4× 4 on the diagonal [3].
After this reordering we solve the remaining system by block forward/backward substitution. The blocks
on the diagonal are solved using an LU decomposition with complete pivoting in order to get a robust
scheme. Beside the 4n̂2 FPN memory for assembling the matrix we need additional 2n̂ FPN memory to
concatenate two consecutive columns of Ŷ into one column vector of length 2n̂. This is necessary because
we can not guarantee that the two consecutive columns reside in a continuous memory location, i.e. the
leading dimension of the matrix Ŷ is not equal to the number of rows.

Another performance improving strategy is to compute ÂT X̂·l and Ĉ
T X̂·l once and store them. This

reduces the complexity of the right hand side updates from O(n̂4) to O(n̂3). Therefore, we reuse the
memory from the matrix assembly to store these precomputed vectors. Combining the precomputation
strategy with both cases of the inner linear system we get Algorithm 2 for the solution of the generalized
Sylvester equation. We showed: the algorithm needs 4n̂2 + 2n̂ FPN extra memory in order to satisfy our
requirements for the inner solver. Because of the fact that the outer algorithm already needs N2

B FPN
memory for the computations in the right hand side update, we only need to allocate 3n̂2 +2n̂ FPN extra
memory.

The �op count of the algorithm strongly depends on the diagonal block structure of the matrices Â
and D̂. Therefore we only determine the best case �op count which is achieved if Â and D̂ only have 1×1
blocks on their diagonal and the worst case situation when both matrices consist of only 2× 2 blocks on
the diagonal. We assume that n̂ = m̂ which is almost always the case unless we have to resize a block to
avoid the splitting of a complex eigenvalue pair in the outer Algorithm 1.

The best case situation involves the assembly and solution of n̂ linear systems in Step 4 of Algorithm 2.
One of them needs

3n̂2︸︷︷︸
assemble

+ n̂2︸︷︷︸
solve

= 4n̂2

�ops. The precomputation of the right hand side update costs 4n̂2 �ops. Each of the (n̂−k) updates per
iteration now costs only 4n̂ �ops. The summation over all iterations gives us the best case Finner �op
count for this algorithm:

F
(best)
inner (n̂) =

n̂∑
k=1

(
4n̂2 + 4n̂2 +

n̂∑
l=k+1

4n̂

)
= 10n̂3 − 2n̂2. (23)

The worst case situation causes only n̂
2 iterations because each iteration processes two columns at

once. On the other hand, we have to solve a large linear system of size 2n̂×2n̂ in Step 11 of Algorithm 2.
Under the assumption that Â and D̂ only consist of 2 × 2 diagonal blocks the assembled matrix has n̂

2
diagonal blocks of size 4× 4. Factorizing and solving with one of those blocks costs 63 �ops. Each block
involves a matrix-vector product of size 4 × (2n̂ − 4l) to update the right hand side in the substitution

8

Algorithm 2 Solution of the generalized Sylvester equation (19)

Input: (A,C) ∈ Rn×n and (D,B) ∈ Rm×m in real generalized Schur form, Y ∈ Rn×m.
Output: X ∈ Rn×m solving ATXB + CTXD = Y
1: k := 1
2: while k ≤ n do

3: if Dk+1,k = 0 then

4: Solve (BkkA+DkkC)T X·k = Y·k
5: x1 := ATX·k, x2 := CTX·k
6: for l = k + 1, . . . ,m do

7: Y·l := Y·l −Bk,lx1 −Dk,lx2

8: end for

9: k := k + 1
10: else

11: Solve(
BkkA+DkkC Bk,k+1A+Dk,k+1C

Dk+1,kC Bk+1,k+1A+Dk+1,k+1C

)T (
X·k

X·k+1

)
=

(
Y·k

Y·k+1

)
12: x1 := ATX·k, x2 := CTX·k
13: y1 := ATX·k+1, y2 := CTX·k+1

14: for l = k + 2, . . . ,m do

15: Y·l := Y·l −Bk,lx1 −Dk,lx2

16: Y·l := Y·l −Bk+1,ly1 −Dk+1,ly2
17: end for

18: k := k + 2
19: end if

20: end while

scheme. The sum over all blocks in the matrix leads to

n̂
2∑

l=1

(63 + 8 (2n̂− 4l)) = 4n̂2 +
47

2
n̂

�ops to solve one linear system in Step 11. Assembling the matrix costs additional 10n̂2 �ops. The
precomputation of the update costs 8n̂2 �ops, where �nally each update only needs 8n̂ �ops. This gives
us an overall worst case �op count of

F
(worst)
inner (n̂) =

n̂
2∑

k=1

(
10n̂2 + 4n̂2 +

47

2
n̂+ 8n̂2 +

n̂∑
l=2k+1

8n̂

)

= 13n̂3 +
31

4
n̂2. (24)

In contrast to solving the generalized Sylvester equation (19) using its Kronecker representation we only
need 13n̂3 �ops asymptotically in the worst case instead of 2

3 n̂
6.

Inserting this with n̂ = NB into Equation (15) to count all inner Sylvester solves we get

1

2

(
n2

N2
B

+
n

NB

)
F

(best)
inner (NB) =

1

2

(
n2

N2
B

+
n

NB

)(
10N3

B − 2N2
B

)
= 5N2

Bn+ 5NBn
2 −NBn− n2

�ops. Together with the outer algorithm we get an overall best case �op count F (best)(n,NB) of

F (best)(n,NB) =
8

3
n3 − n2 + 9n2NB +

7

3
nN2

B − nNB − 4N3
B (25)

9

to solve a (quasi-) triangular generalized Lyapunov equation. The worst case situation leads to

1

2

(
n2

N2
B

+
n

NB

)
F

(worst)
inner (NB) =

13

2
N2

Bn+
13

2
NBn

2 +
31

8
NBn+

31

8
n2

�ops to solve all inner Sylvester equations and �nally to a worst case �op count F (worst)(n,NB) of

F (worst)(n,NB) =
8

3
n3 +

31

8
n2 +

21

2
n2NB +

23

6
nN2

B +
31

8
nNB − 4N3

B (26)

for Algorithm 1. The �op counts (25) and (26) show us that as long as NB is of moderate size the 8
3n

3

�ops of the outer algorithm will dominate the overall �op count. It is obvious that if we consider NB → n
we end up with the best or respectively the worst case �op count of the inner Sylvester equation solver.

3.2 An Approach based on Kågström and Westin

In the previous subsection we presented a �rst approach to handle the inner Sylvester equation (9).
Beside the idea of Gardiner and Laub to extend the Bartels-Stewart algorithm Kågström and Westin [7]
presented a forward/backward substitution for generalized Sylvester equations of the structure

ǍR− LB̌ = Č
ĎR− LĚ = F̌ .

(27)

This corresponds to our Sylvester equation (19) by setting Ǎ = ÂT , B̌ = −D̂, Č = Ŷ , Ď = ĈT , Ě = B̂
and F̌ = 0 and solving R = X̂B̂ or L = ĈT X̂ to retrieve the solution X̂.

The algorithm to solve Equation (27) is available as xTGSYL and xTGSY2 in LAPACK [6]. This imple-
mentation does not meet our requirements in order to get a fast inner solver in Algorithm 1. The LAPACK
implementation requires that all input matrices are (quasi) upper triangular and non transposed. This
violates our requirements because additional work is necessary and it does either modify our matrices or
need a copy of all of them. Therefore we have to reformulate the generalized Schur algorithm [7] to work
in-place with our matrices.

In our case, Equation (27) transforms to

ÂTR+ LD̂ = Ŷ

ĈTR− LB̂ = 0 = Ŵ ,
(28)

with (Â, Ĉ) ∈ Rn̂×n̂, (D̂, B̂) ∈ Rm̂×m̂, Y ∈ Rn̂×m̂ and W ∈ Rn̂×m̂. The involved matrices result in the
following structure: (

@
@@

)()
+

()(
@

@@

)
=

()
(
@
@@

)()
−
()(

@
@@

)
= 0

.

All matrices are partitioned in p× q blocks of size 1× 1 or 2× 2 depending on the diagonal blocks in Â
and D̂. Regarding this we can compute the blocks R11 and L11 directly by solving

ÂT
11R11 + L11D̂11 = Ŷ11

ĈT
11R11 − L11B̂11 = Ŵ11

which is either a 2× 2, a 4× 4 or an 8× 8 system depending on the complex conjugate eigenvalue pairs
in (Â, Ĉ) and (D̂, B̂). Afterwards, we update the �rst column and the �rst row using R11 and L11 by

Ŷ2:n,1 = Ŷ2:n,1 − ÂT
1,2:nR1,1

Ŵ2:n,1 = Ŵ2:n,1 − ĈT
1,2:nR1,1

10

and

Ŷ1,2:m = Ŷ1,2:m − L1,1D̂1,2:m

Ŵ1,2:m = Ŵ1,2:m + L1,1B̂1,2:m.

This scheme is applied row by row to each block in R and L. In general this scheme looks as follows:

ÂT
iiRij + LijD̂jj = Ŷij −

i−1∑
k=1

ÂT
ikRkj −

j−1∑
k=1

LikD̂kj = Ỹij

ĈT
iiRij − LijB̂jj = Ŵij −

i−1∑
k=1

ĈT
ikRkj +

j−1∑
k=1

LikB̂kj = W̃ij

(29)

for i = 1, . . . , p and j = 1, . . . , q. The four sums to update the right hand sides can be computed at once
by one matrix-matrix product per sum. The linear system in Equation (29) is rewritten to(

ID̂ ⊗ ÂT
ii D̂T

jj ⊗ IÂ
ID̂ ⊗ ĈT

ii −B̂T
jj ⊗ IÂ

)(
vec(Rij)
vec(Lij)

)
=

(
vec(Ỹij)

vec(W̃ij)

)
, (30)

where IÂ is an identity matrix of the dimension of Âii and ID̂ is an identity matrix of the dimension of

D̂jj . We need at most 64 FPN extra memory to assemble the system matrix if both Âii and D̂jj are
2× 2 matrices. Additionally, we need 8 FPN extra memory for (Rij , Lij). Because our original Sylvester
equation (27) has only one right hand side we need another n̂m̂ FPN extra memory to store the temporary
second right hand side Ŵ which is set to 0 in the beginning. The memory for the solution (R,L) is not
necessary because after we have solved for (Rij , Lij) the right hand side at block (i, j) is not needed any

longer. In this way, the right hand side (Ŷ , Ŵ) is overwritten by the solution (R,L).

After the computation of R and L we have to restore the solution X̂ of the original Sylvester equa-
tion (19) by either solving

X̂ = Ĉ−TL (31)

or
X̂ = RB̂−1 (32)

which both can be handled by BLAS's xTRSM routine because B̂ and Ĉ are upper triangular matrices. In
order to achieve the best quality of the result we choose between both variants using condition numbers
of B̂ and Ĉ. Employing the upper triangular matrices we can cheaply compute the 2-norm condition
number by

cond2(T) ≈ max(|diag (T) |)
min(|diag (T) |)

.

Algorithm 3 shows the overall procedure to solve our inner Sylvester equation using the generalized
Schur algorithm of Kågström and Westin. Based on this algorithm we now determine the �op count for
the best and worst case. Again, the best case is when both matrices Â and D̂ only have 1× 1 blocks on
their diagonal. The worst case is the other extreme situation where Â and D̂ consist of 2 × 2 diagonal
blocks only. Caused by the usage inside the Lyapunov equation solver from Section 2 we assume n̂ = m̂
again.

In the best case we now have p = n̂ and q = n̂. For each inner iteration we solve the the 2× 2 linear
systems in Step 4 employing 11 �ops. The updates of both right hand sides in Step 6 and 7 cost 4(n̂− i)
�ops and the updates in Steps 10 and 11 cost 4(n̂− j) �ops. Together with the �nal triangular solve we
obtain

F
(best)
inner (n̂) = n̂3 +

n̂∑
i=1

n̂∑
j=1

(11 + 4(n̂− i) + 4(n̂− j))

= 5n̂3 + 7n̂2 (33)

11

Algorithm 3 Solution of the generalized Sylvester equation (19)

Input: (A,C) ∈ Rn×n and (D,B) ∈ Rm×m in real generalized Schur form, Y ∈ Rn×m partitioned in 1 × 1 and
2× 2 blocks.

Output: X ∈ Rn×m solving ATXB + CTXB = Y
1: W := 0 ∈ Rn×m

2: for i = 1, . . . , p do

3: for j = 1, . . . , q do

4: Solve

(
ID ⊗AT

ii DT
jj ⊗ IA

ID ⊗ CT
ii −BT

jj ⊗ IA

)(
vec(Rij)
vec(Lij)

)
=

(
vec(Yij)
vec(Wij)

)
5: if i < p then

6: Yi+1:p,j := Yi+1:p,j −AT
i,i+1:pRi,j

7: Wi+1:p,j := Wi+1:p,j − CT
i,i+1:pRi,j

8: end if

9: if j < q then

10: Yi,j+1:q := Yi,j+1:q − Li,jDj,j+1:q

11: Wi,j+1:q := Wi,j+1:q + Li,jBj,j+1:q

12: end if

13: end for

14: end for

15: if cond2(B) < cond2(C) then
16: X = RB−1

17: else

18: X = C−TL
19: end if

as best case F
(best)
inner �op count of the generalized Schur algorithm for this case.

In the worst case situation we have only 2× 2 blocks in the matrices. That means p = n̂
2 and q = n̂

2 .
Therefore, one solution of the 8 × 8 system in Step (4) costs 415 �ops. The updates in Steps 6 and 7
now cost 32(n̂

2 − i). Analogously, the updates in Steps 10 and 11 cost 32(n̂
2 − j). This leads to an overall

worst case F
(worst)
inner �op count of

F
(worst)
inner (n̂) = n̂3 +

n̂
2∑

i=1

n̂
2∑

j=1

(
415 + 32(

n̂

2
− i) + 32(

n̂

2
− j)

)
= 5n̂3 +

383

4
n̂2. (34)

In contrast to the solver based on the Gardiner-Laub approach from Subsection 3.1 the generalized
Schur approach has the same constant in front of its highest order term for the best and the worst case
�op count. That means that for larger dimensions the di�erence between the best and the worst case does
not increase as fast as for the Gardiner-Laub approach. Furthermore, the generalized Schur algorithm is
at least two times cheaper than our �rst approach.

Together with the Equation (15) and n̂ = NB all Sylvester equation solves need

1

2

(
n2

N2
B

+
n

NB

)
F

(best)
inner (NB) =

5

2
N2

Bn+
5

2
NBn

2 +
7

2
NBn+

7

2
n2

�ops. Hence, we get an overall best case �op count F (best) of

F (best)(n,NB) =
8

3
n3 +

7

2
n2 +

13

2
NBn

2 − 1

6
NB

2n+
7

2
NBn− 4NB

3 (35)

12

to solve a (quasi-) triangular generalized Lyapunov equation (6). In the worst case situation, we need

1

2

(
n2

N2
B

+
n

NB

)
F

(worst)
inner (NB) =

5

2
N2

Bn+
5

2
NBn

2 +
383

8
NBn+

383

8
n2

�ops to solver the inner Sylvester equations and get an overall �op count of

F (worst)(n,NB) =
8

3
n3 +

383

8
n2 +

13

2
NBn

2 +
383

8
NBn−

1

6
NB

2n− 4NB
3. (36)

Like in the Gardiner and Laub approach the asymptotic �op count is 8
3n

3 for moderate sizes of NB . If
we consider the case NB → n we get the �op count of the inner Sylvester solver and the in�uence of the
outer iteration vanishes.

3.3 Diagonal Blocks in the outer Algorithm

In case we have to solve for a block Xkk in Algorithm 1 the generalized Sylvester equation (19) simpli�es
to a generalized Lyapunov equation again. These blocks are solved with one of the two solvers presented,
as well, but this may cause instabilities and lead to an inaccurate solution. From the introduction we
know that for a given symmetric right hand side Y the solution X has to be symmetric, as well. However,
in �nite arithmetic the structure of both Sylvester solvers presented in Subsections 3.1 and 3.2 do not
guarantee that the solution Xkk of

AT
kkXkkEkk + ET

kkXkkAkk = Ŷkk

satis�es
Xkk = XT

kk. (37)

The numerical results in Section 5 show that this error in fact increases with the block size NB . In
order to get a reliable outer algorithm, we have to ensure that Condition (37) even holds in �oating point
arithmetic for all diagonal blocks Xkk of X. The o�-diagonal part of the solution is not a�ected by this
problem because the outer algorithm constructs the lower triangular part of the solution by transposing
the upper triangle as soon as the necessary blocks have been computed.

One can think of three di�erent approaches to ensure a symmetric diagonal block in X:

1. The diagonal block Xkk is solved using Algorithm 2 or Algorithm 3 and the upper triangular part
is copied to the lower triangular part. A possible problem of this idea is that we do not know if the
upper or the lower triangular part is closer to the exact solution. This leads us to the next strategy.

2. The diagonal block Xkk is solved using Algorithm 2 or Algorithm 3 and we symmetrize the block
by

1

2

(
Xkk +XT

kk

)
→ Xkk. (38)

The division by two is handled exactly by the IEEE �oating point arithmetics in this way this
operation will not disturb our solution.

3. The diagonal block Xkk is solved using a Lyapunov solver. In this way we use Algorithm 1 again
with a smaller block size. This also decreases the overall �op count of the algorithm because instead
of at least O(5N3

B) �ops for the Sylvester solvers the Lyapunov solver only needs O(8
3N

3
B) �ops to

solve for one diagonal block.

Due to the fact that the third idea leads to a recursion, and thus the same problem will reappear again,
we focus on the second variant. The results in Section 5 show that this gives the most accurate results
in average, as well.

13

Gardiner and Laub Kågström and Westin

Flop Count per Block
best case 10N3

B − 2N2
B 5N3

B + 7N2
B

worst case 13NB
3 + 31

4
NB

2 5N3
B + 383

4
N2

B

Flop Count Overall

best case
8
3
n3 +9NBn

2 + 7
3
N2

Bn
− 4N3

B − n2 −NBn

8
3
n3 + 7

2
n2 + 13

2
NBn

2

− 1
6
NB

2n+ 7
2
NBn− 4NB

3

worst case
8
3
n3 + 21

2
NBn

2 + 23
6
N2

Bn+
− 4N3

B + 31
8

(
n2 +NBn

) 8
3
n3 + 383

8
(n2 +NBn)− 4NB

3

+ 13
2
NBn

2 − 1
6
NB

2n

Additional Memory to the
outer algorithm

3N2
B + 2NB FPN

(+N2
B FPN from Algorithm 1)

72 FPN

Table 1: Comparison of the Sylvester solvers in the outer Algorithm

Summary of the inner Sylvester equation solvers. After we discussed two di�erent approaches
to solve the inner Sylvester equation (19) we summarize their implementation speci�c values and some
advantages and disadvantages.

Table 1 shows the �op count and the extra memory which is necessary to solve a (quasi-) triangular
generalized Lyapunov equation employing the two di�erent inner solvers. We see that the Kågström-
Westin approach yields a lower �op count and the worst and best case situations do not di�er as much
as for the Gardiner-Laub approach. Besides that the Kågström-Westin approach requires only N2

B FPN
and some constant extra memory which is already covered by the extra memory requirements of the outer
algorithm in contrast to the additional requirements of the Gardiner-Laub approach. The �op count and
the extra memory requirements, however, do not give us any information how these variants will utilize
modern computer architectures.

Other di�erences and caveats are:

� The Gardiner-Laub approach assembles relatively large linear systems. This causes additional
memory transfers which may result in the deletion of required data from the cache. On the other
hand, the involved operations work continuously on the data which is good from a CPU point
of view. The updates of the right hand sides are, e.g, mostly vector additions that may reside
completely in the CPU cache. Furthermore, the involved triangular solves exists in highly optimized
variants in di�erent BLAS implementations.

� The Kågström-Westin approach does not solves the generalized Sylvester equation (19) directly and
needs an additional solve with B̂ or Ĉ, which is covered by BLAS as well. Although we are choosing
the best conditioned one to solve with, this might lead to inaccurate solutions if both matrices
are nearly singular. From the data locality point of view the updates of the right hand sides are
irregularly structured in contrast to the Gardiner-Laub approach.

4 Memory Access Improvements

Beside the derivation of a level-3 BLAS enabled variant in the previous two sections we discuss an addi-
tional optimization which focuses on the memory access of the presented algorithm. On nearly all current
computer architectures it is necessary to achieve an ordered and aligned memory access to get the max-
imum performance. On the lowest level this a�ects mostly the vector registers (SSE, AVX, AtliVec) of
the CPU. In the case of the AVX instruction set of the x86 architecture the vector registers are able to
deal with 4 double precision numbers at once. These registers are �lled in two di�erent ways. On the
one hand, there exists an unaligned load, namely VMOVUPD, which transfers 4 double precision numbers

14

from an arbitrary memory location to an AVX registers. On the other hand, the aligned load, namely
VMOVAPD, which moves 4 double precision numbers from a 32 byte aligned memory location to the AVX
registers. The aligned load is much faster than its unaligned counterpart such that we have to use this
for an optimal implementation.

In context of Algorithm 1 that means: if we want to achieve a maximum performance we have to
guarantee that each block in the matrices As, Es and Xs, as de�ned in Equation (8) is aligned in a way
such that fast load and store operations are possible. If we stick to the case of AVX this results in an
alignment of 32-byte (or 4 double precision numbers) for the start of each block in the matrices. This
results in the following two conditions for the data layout:

1. The memory location of the �rst element of each column must be a multiple of the alignment.
The easiest way to guarantee this property for arbitrary matrix sizes is to use a leading dimension
nLD which is maybe a bit larger than the matrix dimension n. The optimal leading dimension is
determined via

nLD :=

⌊
(n+ L− 1)

L

⌋
· L,

where L denotes the alignment counted in �oating point numbers of the desired precision and b·c
is the �oor operation. From the implementation point of view this does not in�uence anything
because the used BLAS and LAPACK routines are able to handle arbitrary leading dimensions.

2. The block size NB must be a multiple of the alignment such that each blocks starts with an aligned
value and all subsequent elements in the block are aligned as well. In the case of an AVX enabled
CPU and double precision arithmetics this will be 4, for older CPUs it is mostly 2.

The second condition is a bit problematic in our algorithm. In Subsection 2.1 we described that the
actual block size NB is adjusted by ±1 to �t the eigenvalue structure of the matrix pencil. For example
if we use a block size NB = 32 and the (32, 32) entry of the matrix As belongs to a complex eigenvalue
pair we have to use either 31 or 33 as block size in this case. That means that all following blocks be will
moved by one column and one row. The column shift does not disturb the alignment but the row shift
does. The result is that even if we start with a well aligned matrix we might loose this property if the
matrix pencil has at least one complex eigenvalue pair.

In order to handle this problem we have to permute the matrix pencil (As, Es) such that each 2× 2
diagonal block starts on an odd position. Using Givens rotations we can move the eigenvalues in (As, Es)
to any position on the diagonal [4]. Due to the fact that we do not want to introduce further restrictions
to the block size we sort all complex eigenvalue pairs to the upper left on the diagonal. Because that are
all 2× 2 blocks we never get into trouble if the block size is a multiple of an alignment larger or equal to
2 �oating point numbers. The block structure of the matrix As in Equation (8) then changes to

As :=



A1,1 . . . A1,k a1,k+1 . . . a1,p
. . .

...
...

...
Ak,k ak,k+1 . . . ak,p

ak+1,k+1 . . . ak+1,p

. . .
...

ap,p


, (39)

where A∗,∗ denotes a 2× 2 block and a∗,∗ a scalar value.

The structure in (39) can be easily computed via the QZ-algorithm implementation of LAPACK. By
providing the additional select function one can choose which eigenvalues are moved to the upper left
part.

In the numerical results we show how the adjustment of the leading dimension and the eigenvalue
reordering in�uence the performance of Algorithm 1.

15

Block size NB 1 2 4 8 16 24 32 40 48 56 64 72 80

SLICOT

n = 500 0.56 - - - - - - - - - - - -

n = 1000 4.79 - - - - - - - - - - - -

n = 2000 44.55 - - - - - - - - - - - -

Gardiner-Laub

n = 500 0.63 0.57 0.35 0.17 0.14 0.13 0.14 0.14 0.15 0.16 0.17 0.18 0.20

n = 1000 5.17 4.82 2.99 1.12 0.81 0.74 0.73 0.74 0.76 0.79 0.83 0.86 0.91

n = 2000 46.32 43.23 26.55 7.89 5.25 4.59 4.39 4.35 4.36 4.45 4.55 4.67 4.80

Kågström-Westin

n = 500 0.68 0.62 0.38 0.21 0.18 0.18 0.18 0.19 0.20 0.20 0.21 0.22 0.23

n = 1000 5.35 4.98 3.13 1.23 0.94 0.88 0.87 0.88 0.89 0.91 0.94 0.96 0.99

n = 2000 47.08 43.90 27.08 8.33 5.76 5.12 4.93 4.87 4.84 4.88 4.93 5.02 5.10

Table 2: Runtime in seconds for varying block sizes to solve a (quasi-) triangular generalized Lyapunov
equation and di�erent inner solvers, single-threaded BLAS.

5 Numerical Results

After we have seen (in Section 2) that the generalized Bartels-Stewart algorithm will work for arbitrary
blocks sizes and how to handle the arising inner generalized Sylvester equations e�ciently (in Section 3) we
now test their performance and their accuracy. To this end, we use the following hard- and software setup.
All tests are executed on a dual-socket Intel® Xeon® X5650 server with 12 cores and 48 GB main memory.
The algorithms are written in Fortran 90, compiled with Intel® Fortran Compiler 13 and linked against
Intel®MKL 11 as BLAS and LAPACK implementation. The reference results are obtained using the level-2
BLAS routines SG03AY from SLICOT 5.0 which is an improved version of the implementation by Penzl [11].
Additionally, we extend the SLICOT subroutine SG03AD which implements the overall procedure from
Section 2 including the pre- and post-transformations and separation estimation. Therefore, we replaced
all calls to SG03AY by our implementation and adjusted to memory requirements and the calling sequence
to select the inner Sylvester solver and the block size NB . All basic tests are done without the alignment
improvements of Section 4, which are part of separate benchmarks at the end of this section.

As input data for the solver we use scalable matrix pencils. The �rst one is a random pencil to analyze
the performance without focusing on a special eigenvalue structure of the matrix pencil. These matrices
are generated via two subsequent calls of DLARNV from LAPACK. The initial seed for this subroutine is set
to (1, 1, 1, 1) and incremented during each call. These matrices do not have any specially tuned spectra
so we see them as an average case for the algorithm. The second example is the arti�cial one already
used by Penzl to check if the algorithm can handle ill-conditioned problems. As in [11, 3] we de�ned the
matrices A and E as:

A = (2−t − 1)In + diag(1, 2, . . . , n) + Un

E = In + 2−tUn,

where In is the n×n identity and Un is an n×n matrix with unit entries above the diagonal and all other
entries zero. By increasing the parameter t we make the system more and more ill-conditioned. This
example is similar to Example 4.3. from [8] but without transforming the matrices to generalized Schur
form before. In all cases we set the true solution X(true) to a matrix with all unit entries and compute
the right hand side Y appropriately. In the case where we only benchmark the Bartels-Stewart part we
transform the pencil (A,E) to real generalized Schur form before we compute the right hand side. We
skip extra benchmarks for the generalized Stein equation because they are similar from an algorithmic
point of view and in practice we observed comparable results.

First, we want to obtain the optimal block size NB for both variants of the inner Sylvester solver.
Therefore, we run our implementation for three �xed dimensions n ∈ (500, 1000, 2000) of the random

16

Block size NB 1 2 4 8 16 24 32 40 48 56 64 72 80

SLICOT

n = 500 0.56 - - - - - - - - - - - -

n = 1000 4.93 - - - - - - - - - - - -

n = 2000 41.98 - - - - - - - - - - - -

Gardiner-Laub

n = 500 0.65 0.57 0.35 0.17 0.13 0.11 0.12 0.12 0.12 0.13 0.14 0.15 0.17

n = 1000 5.21 4.86 2.66 0.94 0.57 0.45 0.46 0.48 0.48 0.52 0.56 0.58 0.63

n = 2000 43.81 40.04 18.47 6.11 3.16 2.10 2.13 2.23 2.06 2.25 2.39 2.41 2.61

Kågström-Westin

n = 500 0.68 0.62 0.39 0.20 0.17 0.15 0.16 0.16 0.16 0.17 0.18 0.19 0.20

n = 1000 5.40 5.03 2.79 1.05 0.70 0.59 0.60 0.62 0.61 0.64 0.67 0.68 0.71

n = 2000 44.72 40.84 19.11 6.63 3.76 2.73 2.77 2.84 2.63 2.77 2.88 2.86 2.99

Table 3: Runtime in seconds for varying block sizes to solve a (quasi-) triangular generalized Lyapunov
equation and di�erent inner solvers, 12 threads.

matrices in generalized Schur form. We iterate over increasing block size NB from 1 to 80 and compare
to the SLICOT implementation. The symmetry of the diagonal blocks is guaranteed by using formula (38).
Table 2 shows the runtime using the MKL in single thread mode. We observe that a block size of 24 or 32
leads to minimal runtime. Furthermore, we can accelerate the algorithm by a factor of 6.5 for n = 1000
or even 10.24 for n = 2000 in comparison to the SLICOT routine. Another observation is that, although
we have shown in Section 3 that the Kågström-Westin approach needs less �ops than the Gardiner-Laub
approach, it is continuously a bit slower. The main reason for this might be the reuseability of data that
is already in the CPU cache and the order in which the data is accessed. From Figure 1 we observe that
even for larger block sizes the algorithm still works faster than the original implementation in SLICOT.
That shows us that choosing a moderate block size larger than 8 accelerates the outer algorithm enough
to compensate the increasing �op count of the inner Sylvester solver as long as we do not drive NB → n.

We run the same setup again with the MKL in multi-thread mode employing 12 threads. Table 3
shows us that here an optimal block size of 24 works as well but if the size of the matrix increase more,
it may be useful to choose a larger block size like 48. Furthermore, we see that using a threaded BLAS
implementation does not results in a mentionable speed up for the SLICOT implementation; it can even
slow it down. In contrast to that our implementation using the Gardiner-Laub based inner solver gains
a speed up of 10.95 for n = 1000, or even of 20.38 for n = 2000.

Separation Est. Forward Error Est.

NB t = 0 t = 10 t = 20 t = 30 t = 40 t = 0 t = 10 t = 20 t = 30 t = 40
SLICOT

1 2.00e+03 4.77e-07 4.55e-13 4.34e-19 4.14e-25 2.87e-12 1.17e-05 1.20e-02 1.23e+01 1.26e+04

Gardiner-Laub

8 2.00e+03 4.77e-07 4.55e-13 4.34e-19 4.14e-25 2.87e-12 1.17e-05 1.20e-02 1.23e+01 1.26e+04

24 2.00e+03 4.77e-07 4.55e-13 4.34e-19 4.14e-25 2.87e-12 1.17e-05 1.20e-02 1.23e+01 1.26e+04

48 2.00e+03 4.77e-07 4.55e-13 4.34e-19 4.14e-25 2.87e-12 1.17e-05 1.20e-02 1.23e+01 1.26e+04

Kågström-Westin

8 2.00e+03 4.77e-07 4.55e-13 4.34e-19 4.14e-25 2.87e-12 1.17e-05 1.20e-02 1.23e+01 1.26e+04

24 2.38e+00 4.77e-07 4.55e-13 4.34e-19 4.14e-25 2.42e-09 1.17e-05 1.20e-02 1.23e+01 1.26e+04

48 2.38e+00 4.77e-07 4.55e-13 4.34e-19 4.14e-25 2.42e-09 1.17e-05 1.20e-02 1.23e+01 1.26e+04

Table 4: Separation and Forward Error estimate for the generalized Lyapunov equation, Arti�cial Ex-
ample n = 1000.

Beside the optimal block size we have to check that varying the block size does not in�uence the results.
Therefore, we use the arti�cial example and check the relative residual ||ATXE+ETXA−Y ||F /||Y ||F , the
relative forward error ||Xtrue−Xcomputed||/||Xtrue||F and the separation and forward error estimates [11]
computed by SG03AD from SLICOT. In extension to that we introduce two local error measures: First,

17

0 10 20 30 40 50 60 70 80 90 100 110 120
0

3

6

Block Size NB

T
im

e
in

s

GL - Time KW - Time SLICOT - Time

GL - Speed up KW - Speed up

0 10 20 30 40 50 60 70 80 90 100 110 120
0

4

8

S
p
ee
d
u
p

Figure 1: Runtime and speed up for a generalized Lyapunov equation, n = 1000, single thread. (GL =
Gardiner and Laub, KW = Kågström and Westin)

we de�ne the Forbenius-normwise local relative residual

||(ATXE + ETXA− Y)./Y ||F ,

where � ./� denotes the element-wise division and Forbenius-normwise local forward error

||
(
Xtrue −Xcomputed

)
./Xtrue||F .

Second, we de�ne themaximal elementwise relative residual and themaximal elementwise relative forward
error as

max
i,j

(
(ATXE + ETXA− Y)ij

Yij

)
and respectively

max
i,j

(
Xtrue

ij −Xcomputed
ij

Xtrue
ij

)
.

By construction our example guarantees that we do not divide by zero. We assume that the results
from SLICOT represent the �true� values because computing the exact values is too expensive for large
problems. Due to the fact that the matrices (A,E) are already upper triangular we do not have to
compute their QZ decomposition before. The size of the arti�cial problem is �xed to n = 1000 and
the parameter t varies from 0 to 40. The separation and the forward error estimate are computed
by replacing SG03AY by our implementation in the driver routine SG03AD of SLICOT. The results in
Table 4 show that even for the worstly conditioned problems t = 40 the SLICOT implementation and
the Gardiner-Laub approach yield the same estimates for the separation and the forward error. The
Kågström-Westin approach has some instabilities for an increasing block size. The reason behind this
might be the additional solve to restore the solution of the inner Sylvester equations. The results for the
relative residual and the computed forward error in Table 5 show the same behaviour. Switching to the

18

Relative Residual Relative Forward Error

NB t = 0 t = 10 t = 20 t = 30 t = 40 t = 0 t = 10 t = 20 t = 30 t = 40
SLICOT

1 0.00 0.00 0.00 0.00 1.07e-15 3.54e-17 4.01e-17 4.17e-17 4.18e-17 5.97e-14

Gardiner-Laub

8 0.00 0.00 0.00 0.00 5.24e-16 0.00 0.00 0.00 0.00 3.00e-14

24 0.00 0.00 0.00 0.00 4.15e-16 0.00 0.00 0.00 0.00 2.23e-14

48 0.00 0.00 0.00 0.00 4.17e-16 0.00 0.00 0.00 0.00 2.07e-14

Kågström-Westin

8 1.62e-16 1.48e-16 1.44e-16 1.56e-16 5.14e-16 2.15e-14 2.03e-14 1.89e-14 2.14e-14 3.03e-14

24 1.78e-16 1.68e-16 1.72e-16 1.73e-16 4.10e-16 2.71e-14 2.69e-14 2.70e-14 2.72e-14 3.15e-14

48 2.02e-16 2.02e-16 2.05e-16 2.03e-16 3.83e-16 8.17e-14 8.14e-14 8.19e-14 8.07e-14 8.82e-14

Table 5: Relative Residual and Relative Forward Error for the generalized Lyapunov equation, Arti�cial
Example n = 1000.

Local Relative Residual Local Relative Forward Error

NB t = 0 t = 10 t = 20 t = 30 t = 40 t = 0 t = 10 t = 20 t = 30 t = 40
SLICOT

1 0.00 0.00 0.00 0.00 1.67e-12 3.54e-14 4.01e-14 4.17e-14 4.18e-14 6.25e-11

Gardiner-Laub

8 0.00 0.00 0.00 0.00 8.86e-13 0.00 0.00 0.00 0.00 2.92e-11

24 0.00 0.00 0.00 0.00 7.67e-13 0.00 0.00 0.00 0.00 2.21e-11

48 0.00 0.00 0.00 0.00 7.70e-13 0.00 0.00 0.00 0.00 2.09e-11

Kågström-Westin

8 1.49e-13 1.41e-13 1.39e-13 1.40e-13 8.98e-13 2.02e-11 1.90e-11 1.92e-11 1.93e-11 2.96e-11

24 1.95e-13 2.02e-13 1.96e-13 2.03e-13 7.58e-13 2.66e-11 2.63e-11 2.63e-11 2.65e-11 3.09e-11

48 3.50e-13 3.55e-13 3.65e-13 3.61e-13 8.46e-13 2.66e-11 2.63e-11 2.63e-11 2.65e-11 3.09e-11

Table 6: Frobenius-normwise Local Relative Residual and Local Relative Forward Error for the general-
ized Lyapunov equation, Arti�cial Example n = 1000.

local residual and forward error Tables 6 and 7 show that the Gardiner-Laub approach results in the most
accurate results as well. Even in comparison to the SLICOT code we get a slightly smaller forward error.
The Gardiner-Laub approach is closer or equal to the SLICOT results and computes a more accurate
solution than the Kågström-Westin approach.

0 10 20 30 40 50 60 70 80 90 100 110 120
10−12

10−8

10−4

100

Block size NB

F
o
rw
a
rd

E
rr
o
r

with symmetrization without symmetrization

Figure 2: Forward error of the Gardiner-Laub approach with and without symmetrization the diagonal
blocks.

All previously presented results used the symmetrization via Equation (38). Now we check the in�u-
ence of this idea using the arti�cial example again. Figure 2 shows the relative forward error depending

19

Local Relative Residual Local Relative Forward Error

NB t = 0 t = 10 t = 20 t = 30 t = 40 t = 0 t = 10 t = 20 t = 30 t = 40
SLICOT

1 0.00 0.00 0.00 0.00 6.26e-15 1.11e-16 1.11e-16 1.11e-16 1.11e-16 2.39e-12

Gardiner-Laub

8 0.00 0.00 0.00 0.00 3.73e-15 0.00 0.00 0.00 0.00 8.23e-13

24 0.00 0.00 0.00 0.00 3.74e-15 0.00 0.00 0.00 0.00 5.32e-13

48 0.00 0.00 0.00 0.00 3.74e-15 0.00 0.00 0.00 0.00 4.32e-13

Kågström-Westin

8 1.22e-15 1.20e-15 1.38e-15 1.35e-15 3.66e-15 5.34e-13 7.70e-13 6.43e-13 4.77e-13 9.47e-13

24 2.75e-15 3.80e-15 3.71e-15 4.08e-15 4.98e-15 4.54e-13 4.44e-13 3.91e-13 4.05e-13 4.27e-13

48 5.86e-15 8.97e-15 8.02e-15 1.15e-14 1.24e-14 1.71e-12 1.51e-12 1.73e-12 1.61e-12 1.65e-12

Table 7: Maximal elementwise Relative Residual and Relative Forward Error for the generalized Lyapunov
equation, Arti�cial Example n = 1000.

0 10 20 30 40 50 60 70 80 90 100 110 120
20

22

24

26

Block Size NB

T
im

e
in

s

GL - Time KW - Time SLICOT - Time

GL - Speed up KW - Speed up

0 10 20 30 40 50 60 70 80 90 100 110 120
0.9

1

1.1

1.2

S
p
ee
d
u
p

Figure 3: Runtime and speed up for a generalized Lyapunov equation including the QZ decomposition,
n = 1000, single thread. (GL = Gardiner-Laub, KW = Kågström - Westin)

on the block size NB for the Gardiner-Laub approach. We see that without the symmetrization the
error will increase dramatically if we select a block size which accelerates the algorithm. From Table 4
we already know that employing the symmetrization formula the results have the same accuracy as the
SLICOT implementation. Additional tests showed that the Kågström-Westin approach behaves similar
and produces worse results without symmetrization, as well.

We perform the �rst benchmark again but with the unreduced random pencil. That means, before we
can solve the Lyapunov equation we have to compute the QZ decomposition of the pencil (A,E), transform
Y before andX afterward the actual solve. Figure 3 shows us the runtime and the speed up for the random
pencil of dimension n = 1000 using a single-threaded BLAS. We can see that, even if we accelerate the
Bartels-Stewart algorithm by a factor of nearly 6.5 in this case, the necessary precomputation will bring
the overall speed up down to only 1.18. The reason behind this is that the computation of the generalized
real Schur decomposition using the QZ algorithm is very expensive. Even if we use a multi-threaded BLAS
this will not change very much because the design of the QZ algorithm, as it is implemented in LAPACK,
prevents it from scaling on multi-core architectures. However, in situations, where the Lyapunov equation
needs to be solved for di�erent right hand sides and the Schur decomposition can be reused, the speedup
will increase again.

20

0 10 20 30 40 50 60 70 80

0.4

0.6

0.8

1

Block size NB

R
u
n
ti
m
e
in

s
aligned memory access unaligned memory access

Figure 4: In�uence of the alignment on the performance, n = 1000, average over 100 random pencils,
single thread.

Block size NB 4 8 16 24 32 40 48 56 64 72 80

Runtime unaligned in s 0.95 0.48 0.37 0.34 0.34 0.35 0.36 0.38 0.40 0.43 0.46

Runtime aligned in s 0.83 0.42 0.33 0.32 0.31 0.32 0.34 0.35 0.38 0.40 0.42

Speed up 1.15 1.13 1.12 1.09 1.09 1.09 1.08 1.08 1.08 1.07 1.08

Table 8: Runtime and Speed up for the aligned and unaligned memory access, n = 1000, single thread.

In�uence of the alignment. After we have shown how our level-3 implementation compares to the
existing SLICOT implementation we now want to show the in�uence of the data alignment. Therefore,
we use another compute server equipped with two 8-core Intel® Xeon® E5-2690 CPUs and 32 GB RAM.
The software setup stays the same as in the previous tests. The main di�erence is that the CPU has AVX
registers, instead of only the SSE4.1 capabilities of the CPU used for the other results. The AVX registers
require 32-byte aligned data to perform fast load and store operations. For our implementation this results
in an alignment of 4 double precision �oating point numbers. That means, the leading dimension nLD

for the matrix storage and the block size must be a multiple of 4. Furthermore, we only use the MKL
in single thread mode to get rid of threading issues. The inner Sylvester equations are solved using the
Gardiner and Laub strategy because this already turned out to be the best choice.

For the test we transform 100 randomly generated pencils of dimension n = 1000 to generalized Schur
form and leave the eigenvalues unsorted for the �rst run and sort the eigenvalues as described in Section 4
for the second run. The results in Figure 4 and Table 8 show that the reordering of the eigenvalues and
the resulting aligned memory can increase the performance of the level-3 BLAS implementation by 9% for
the optimal block sizes NB = 24 and NB = 32. The 9% gain only measures the cases where the spectrum
is already sorted or not and does not cover the additional time spent sorting the eigenvalues in the QZ
algorithm. As already mentioned in the previous paragraph, the additional work in the QZ algorithm is
compensated if we need to solve the Lyapunov equation for multiple right hand sides.

21

6 Conclusions

The numerical results show that using a block variant of the generalized Bartels-Stewart algorithm gains
a good speed up in comparison to the legacy implementation in SLICOT. We have seen that using
the Gardiner-Laub approach to solve the inner Sylvester equations results in the fastest variant with a
comparable accuracy and reliability as the SLICOT implementation. Solving the inner Sylvester equations
using the Kågström-Westin approach is slower, although the �op count analysis showed that it takes less
operations than the Gardiner-Laub approach. Additionally, it can result in instabilities caused by the
�nal solve in Algorithm 3. We observe that if we only accelerate the Bartels-Stewart part we can not gain
a large speed up for the overall problem if we only have to solve with the equation once. The necessary
QZ algorithm required to compute the structure exploited by the Bartels-Stewart algorithm stays the
bottle neck of the overall procedure. As long as we already have the input data in generalized real Schur
form, or we have to solve more than once with the same coe�cients our reformulation is much faster.
Accelerating the overall procedure and replacing the slow QZ algorithm by a multi-core aware variant is
part of our current research.

Once we have a level-3 BLAS formulation of an algorithm we can easily derive accelerator based
variants for GPUs or similar accelerators. Since accelerator devices are even more sensitive to unaligned
memory accesses we have already shown that one can easily get an aligned memory access scheme for
the whole procedure. Porting the algorithm to those devices will be addressed once the CPU version is
�nalized.

Beside the generalized Bartels-Stewart algorithm Penzl developed a generalization of Hammarling's
Method [5, 11] as a level-2 BLAS implementation. Developing a level-3 implementation of this algorithm
is another part of future research, although it appears to be a lot more challenging.

References

[1] R. H. Bartels and G. W. Stewart, Solution of the matrix equation AX +XB = C: Algorithm
432, Comm. ACM, 15 (1972), pp. 820�826.

[2] E. K.-W. Chu, The solution of the matrix equations AXB - CXD=E and
(YA - DZ,YC - BZ)=(E,F), Linear Algebra Appl., 93 (1987), pp. 93 � 105.

[3] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, Solution of the Sylvester matrix
equation AXB + CXD = E, ACM Trans. Math. Software, 18 (1992), pp. 223�231.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, third ed., 1996.

[5] S. Hammarling, Newton's method for solving the algebraic Riccati equation, NPL Report DITC
12/82, National Physical Laboratory, Teddington, Middlesex TW11 OLW, U.K., 1982.

[6] B. Kågström and P. Poromaa, LAPACK-style Algorithms and Software for Solving the Gener-
alized Sylvester Equation and Estimating the Separation Between Regular Matrix Pairs, ACM Trans.
Math. Software, 22 (1996), pp. 78�103.

[7] B. Kågström and L. Westin, Generalized Schur methods with condition estimators for solving
the generalized Sylvester equation, IEEE Trans. Automat. Control, 34 (1989), pp. 745�751.

[8] D. Kressner, V. Mehrmann, and T. Penzl, CTLEX - a collection of benchmark examples for
continuous-time Lyapunuv equations, SLICOT Working Note 1999-6, June 1999. Available from
www.slicot.org.

22

www.slicot.org

[9] C. B. Moler and G. W. Stewart, An algorithm for generalized matrix eigenvalue problems,
SIAM J. Numer. Anal., 10 (1973), pp. 241�256.

[10] B. C. Moore, Principal component analysis in linear systems: controllability, observability, and
model reduction, IEEE Trans. Automat. Control, AC-26 (1981), pp. 17�32.

[11] T. Penzl, Numerical solution of generalized Lyapunov equations, Adv. Comp. Math., 8 (1997),
pp. 33�48.

[12] SLICOT, http://www.slicot.org.

[13] J. J. Sylvester, The Collected Mathematical Papers of James Joseph Sylvester, Volume 4, AMS
Chelsea Publishing, 1973.

23

http://www.slicot.org

A Interface Description of SG03CD

Speci�cation:

SUBROUTINE SG03CD(DICO, JOB, FACT, TRANS, UPLO, N, A, LDA, E, &

& LDE, Q, LDQ, Z, LDZ, X, LDX, SCALE, SEP, FERR, &

& ALPHAR, ALPHAI, BETA, IWORK, DWORK, LDWORK, BWORK,&

& INFO)

Purpose: To solve for X either the generalized continuous-time Lyapunov equation

op(A)TX op(E) + op(E)TX op(A) = sY (40)

or the generalized discrete-time Lyapunov equation

op(A)TX op(A)− op(E)TX op(E) = sY, (41)

where op(M) is either M or MT for M = A, E and the right hand side Y is symmetric. A, E, Y, and the
solution X are N ×N matrices. s (SCALE) is an output scale factor, set to avoid over�ow in X.

Estimates of the separation and the relative forward error norm are provided.

The function is based on SG03AD, SG03AX and SG03AY but in contrast to them this implementation uses a
blocked level-3 BLAS variant of the Bartels-Stewart algorithm in order to achieve a higher performance
on modern computer architectures. The blocksize NB of the inner algorithms (SG03CX and SG03CY) is
�xed to 32. Additionally, the deprecated LAPACK routine DGEGS is replaced by DGGES.

Arguments:

Mode Parameters

DICO � CHARACTER*1

Speci�es which type of the equation is considered:
='C': Continuous-time equation (40)
='D': Discrete-time equation (41).

JOB � CHARACTER*1

Speci�es if the solution is to be computed and if the separation is to be estimated:
= 'X': Compute the solution only;
= 'S': Estimate the separation only;
= 'B': Compute the solution and estimate the separation.

FACT � CHARACTER*1

Speci�es whether the generalized real Schur factorization of the pencil A− λE is supplied on entry
or not:
= 'N': Factorization is not supplied;
= 'F': Factorization is supplied.

TRANS � CHARACTER*1

Speci�es whether the transposed equation is to be solved or not:
= 'N': op(A) = A, op(E) = E;
= 'T': op(A) = AT , op(E) = ET .

24

UPLO � CHARACTER*1

Speci�es whether the lower or the upper triangle of the array X is needed on input:
= 'L': Only the lower triangle is needed on input;
= 'U': Only the upper triangle is needed on input.

Input/Output Parameters

N � INTEGER, (input)
The order of the matrix A. N ≥ 0.

A � DOUBLE PRECISION array, dimension (LDA,N), (input/output)
On entry, if FACT = 'F', then the leading N-by-N upper Hessenberg part of this array must contain
the generalized Schur factor As of the matrix A. As must be an upper quasitriangular matrix. The
elements below the upper Hessenberg part of the array A must be zero. If FACT = 'N', then the
leading N-by-N part of this array must contain the matrix A. On exit, the leading N-by-N part of
this array contains the generalized Schur factor As of the matrix A. (As is an upper quasitriangular
matrix.)

LDA � INTEGER

The leading dimension of the array A. LDA ≥ MAX(1,N).

E � DOUBLE PRECISION array, dimension (LDE,N), (input/output)
On entry, if FACT = 'F', then the leading N-by-N upper triangular part of this array must contain
the generalized Schur factor Es of the matrix E. The elements below the upper triangular part of
the array E must be zero. If FACT = 'N', then the leading N-by-N part of this array must contain
the coe�cient matrix E of the equation. On exit, the leading N-by-N part of this array contains
the generalized Schur factor Es of the matrix E. (Es is an upper triangular matrix.)

LDE � INTEGER

The leading dimension of the array E. LDE ≥ MAX(1,N).

Q � DOUBLE PRECISION array, dimension (LDQ,N), (input/output)
On entry, if FACT = 'F', then the leading N-by-N part of this array must contain the orthogonal
matrix Q from the generalized Schur factorization. If FACT = 'N', Q need not be set on entry. On
exit, the leading N-by-N part of this array contains the orthogonal matrix Q from the generalized
Schur factorization.

LDQ � INTEGER

The leading dimension of the array Q. LDQ ≥ MAX(1,N).

Z � DOUBLE PRECISION array, dimension (LDZ,N), (input/output)
On entry, if FACT = 'F', then the leading N-by-N part of this array must contain the orthogonal
matrix Z from the generalized Schur factorization. If FACT = 'N', Z need not be set on entry. On
exit, the leading N-by-N part of this array contains the orthogonal matrix Z from the generalized
Schur factorization.

LDZ � INTEGER

The leading dimension of the array Z. LDZ ≥ MAX(1,N).

X � DOUBLE PRECISION array, dimension (LDX,N), (input/output)
On entry, if JOB = 'B' or 'X', then the leading N-by-N part of this array must contain the right
hand side matrix Y of the equation. Either the lower or the upper triangular part of this array is
needed (see mode parameter UPLO). If JOB = 'S', X is not referenced. On exit, if JOB = 'B' or
'X', and INFO = 0 then the leading N-by-N part of this array contains the solution matrix X of
the equation.

25

LDX � INTEGER

The leading dimension of the array Z. LDX ≥ MAX(1,N).

SCALE � DOUBLE PRECISION (output)
The scale factor set to avoid over�ow in X. (0 < SCALE ≤ 1)

SEP � DOUBLE PRECISION (output)
If JOB = 'S' or JOB = 'B', and INFO = 0 then SEP contains an estimate of the separation of
the Lyapunov operator.

FERR � DOUBLE PRECISION (output)
If JOB = 'B', and INFO = 0 then FERR contains an estimated forward error bound for the solution
X. If X(true) is the true solution, FERR estimates the relative error in the computed solution,

measured in the Frobenius norm: ||X−X
(true)||F

||X(true)||F
.

ALPHAR � DOUBLE PRECISION array, dimension(N) (output)

ALPHAI � DOUBLE PRECISION array, dimension(N) (output)

BETA � DOUBLE PRECISION array, dimension(N) (output)

If FACT = 'N' and INFO = 0, 3, or 4, then ALPHAR(j)+ALPHAI(j)ı
BETA(j)

, j = 1, . . . , N , are the eigenvalues
of the matrix pencil A− λE. If FACT = 'F', ALPHAR, ALPHAI, and BETA are not referenced.

Workspace

IWORK � INTEGER array, dimension(IDWORK)
If JOB = 'X' then IDWORK = 66 or otherwise IDWORK = N2 + 66

DWORK � DOUBLE PRECISION array, dimension(LDWORK)
On exit, if INFO = 0 and LDWORK=-1, DWORK(1) returns the optimal value of LDWORK.

LDWORK � INTEGER

The length of the array DWORK. The following table contains the minimal work space requirements
depending on the choice of JOB and FACT.

JOB FACT LDWORK

'X' 'F' MAX(1,N2)

'X' 'N' MAX(1,N2,4488,8N+16)

'B', 'S' 'F' MAX(1,2N2,4488,8N+16)

'B', 'S' 'N' MAX(1,2N2,4488,8N+16)

If LDWORK = -1 on entry a workspace query is performed and the necessary workspace is returned
in DWORK(1). No computations are done in this case.

BWORK � LOGICAL array, dimension(N)
BWORK is not referenced if FACT = 'F'.

Error Indicator

INFO � INTEGER

= 0 � successful exit;

< 0 � if INFO = -i, the i-th argument had an illegal value;

26

= 1 � FACT = 'F' and the matrix contained in the upper Hessenberg part of the array A is not in
upper quasitriangular form;

= 2 � FACT = 'N' and the pencil A − λE cannot be reduced to generalized Schur form: LAPACK
routine DGGES has failed to converge;

= 3 � DICO = 'D' and the pencil A − λE has a pair of reciprocal eigenvalues. That is, λi = λ−1j

for some i and j, where λi and λj are eigenvalues of A−λE. Hence, equation (41) is singular;
the computed solution is incorrect;

= 4 � DICO = 'C' and the pencil A− λE has a degenerate pair of eigenvalues. That is, λi = −λj
for some i and j, where λi and λj are eigenvalues of A−λE. Hence, equation (40) is singular;
the solution is not correct.

27

	Introduction
	The Bartels-Stewart Algorithm for the Generalized Lyapunov Equation
	Derivation of the blocked Algorithm
	Outer Algorithm and Flop Count

	Solution of the inner Sylvester Equations
	An Approach based on Gardiner and Laub
	An Approach based on Kågström and Westin
	Diagonal Blocks in the outer Algorithm

	Memory Access Improvements
	Numerical Results
	Conclusions
	Interface Description of SG03CD

