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Abstract

SLICOT is a comprehensive numerical software package for control systems analysis and design. While
based on highly performant Fortran routines, Matlab and Scilab interfaces provide convenient access
for users. In this survey, we summarize the functionality contained in the three SLICOT toolboxes for (i)
basic tasks in systems and control, (ii) system identi�cation, and (iii) model reduction. Several examples
illustrate the use of these toolboxes for addressing frequent computational tasks.
Keywords: numerical methods, software, Matlab, matrix equations, system identi�cation, model re-
duction.



1 Introduction
With the ever-increasing complexity of control systems, e�cient computational methods for their analysis
and design are becoming more and more important. These computational methods need to be based on
reliable and robust numerical software provided by well-tested and user-friendly software libraries. This
paper intents to give an overview of the Matlab1 toolboxes of SLICOT Library2 [8], for solving analysis
and synthesis problems of modern and robust control.

While the core of SLICOT consists of e�cient, robust, and highly portable Fortran 77 routines, there
are currently three MATLAB toolboxes providing a user-friendly interface:

1. Basic Systems and Control Toolbox

2. System Identi�cation Toolbox

3. Model and Controller Reduction Toolbox

The Matlab functions (M-functions) contained in these toolboxes are based on MEX gateways to the
Fortran 77 routines. The MEX-functions are more di�cult to use than the provided M-functions, but
allow a greater �exibility. They are called by the M-functions. Executable SLICOT MEX-�les are
provided for Matlab running under WINDOWS (95, 98, NT, ME, 2000, XP), Sun Solaris, and Linux.

While Section 2 describes the usage of the Basic Systems and Control Toolbox in some detail, Sec-
tions 3 and 4 provide a broader description of the other two toolboxes emphasizing their advantages in
solving computationally challenging problems.

2 The Basic Systems and Control Toolbox
Most of the functionality of SLICOT is concerned with linear time-invariant (LTI) systems in state-space
form. In the continuous-time case, such a system takes the form

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), (1)

and in the discrete-time case,
xk+1 = Axk + Buk

yk = Cxk + Duk.
(2)

In both cases, the system matrix A is n× n, the input matrix B is n×m, the output matrix C is p× n,
and the feedthrough (or input-output) matrix D is p×m. In the following, we assume all matrices to be
real.

Matlab's Control System Toolbox [25] provides the LTI object which allows to conveniently store
and manipulate linear state-space systems. For example, a continuous-time LTI object sys is created by
the command sys = ss(A,B,C,D) with the matrices A,B, C,D as in (1). The LTI object is supported by
SLICOT, but it is worth mentioning that the complete functionality of SLICOT can be accessed (though
in a slightly less convenient way) even if the control toolbox is not available.

1MATLAB is a registered trademark of The MathWorks.
2The SLICOT (Subroutine Library in Systems and Control Theory) software library and the related CACSD tools

based on SLICOT were partially developed within the Numerics in Control Network (NICONET) funded by the European
Community BRITE-EURAM III RTD Thematic Networks Programme, see http://www.icm.tu-bs.de/NICONET. SLICOT
can be used free of charge by academic users, see http://www.slicot.org.
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An alternative way to represent LTIs is provided by the transfer function matrix (TFM), a matrix
function with rational elements obtained from (1) and (2) as

G(λ) = C(λI −A)−1B + D, (3)

where λ is a variable appearing in the Laplace transform, in the continuous-time case, or the z variable
appearing in the z-transform, in the discrete-time case. The representation of G requires O(nmp) param-
eters for the coe�cients of the numerator and denominator, i.e., much less parameters, if m, p ¿ n, than
a state-space representation (needing O(n2) just for the entries of the system matrix). However, SLICOT
avoids the direct use of transfer functions in computations because of the severe numerical di�culties
associated with this approach.

Example 1
The following Matlab code converts a state-space system with diagonal system matrix having diagonal
entries 1, . . . , 50 into a transfer function:
A = diag(1:50); B = ones(50,1); C = ones(1,50);
sys = ss(A,B,C,0); tra = tf(sys);
The command eig(tra) can be used to compute the
poles of this transfer function (marked by the red
crosses in the plot on the right). It turns out that
the round-o� error made during the conversion into
a transfer function has severely perturbed the exact
poles 1, . . . , 50 (marked by the blue dots).
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Extending the state equations in (1) and (2) to Eẋ(t) = Ax(t) + Bu(t) and Exk+1 = Axk + Buk,
respectively, where E is an n× n matrix, leads to linear descriptor systems [26, 36]. The corresponding
LTI object is created by the command sys = dss(A,B,C,D,E). Several SLICOT functions are capable
to deal with such generalized LTI systems.

2.1 System Analysis

This section presents a selection of exemplary SLICOT functions for analyzing intrinsic system properties.

2.1.1 Poles and Zeros

The function polzer computes the poles, zeros and normal rank of a standard or descriptor system.

Example 2 Consider a linear system with poles −1/2, 1, a zero −1/2 and normal rank 1:
A = [4 3;-9/2 -7/2]; B = [ 1; -1 ]; C = [3 2]; D = 0; sys = ss(A,B,C,D);

The command [p,z,r] = polzer(sys) yields the following output:
p = z = r =

1.0000 -0.5000 1
-0.5000

The function polzer can also be used to determine the Kronecker structure [27] of the system pencil[
A− λE B

C D

]
by providing additional output arguments.
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2.1.2 Controllability and Observability

The controllability staircase form of a system is a reliable means to test controllability and identify
uncontrollable poles. For this purpose, an orthogonal matrix U is computed such that

[
UT AU UT B

CU D

]
=




A11 A12 B1

0 A22 0
C1 C2 D


 , (4)

where the subsystem
[

A11 B1

C1 D

]
is controllable and A22 contains all uncontrollable poles. Moreover,

A11 and A22 are in upper staircase form (e.g., in upper Hessenberg form for single-input systems), see [16]
for more details. The original system is controllable if and only if A22 is void. The form (4) can be
computed using the command [syscf,Nc{,U,s}] = slconf(sys{,tol})3. Here, the LTI object syscf
contains the system (4) and the integer Nc is the size of the controllable subsystem. The optional output
arguments U and s provide the orthogonal transformation matrix and the block sizes of the staircase
form, respectively. The optional input argument tol is a tolerance used to decide matrix ranks during
the computation (by default tol = n2 × eps).

Example 3 Applying [syscf,Nc] = slconf(sys) with sys as in Example 2 yields the following output:

a = b = c = d =
x1 x2 u1 x1 x2 u1

x1 1 -7.5 x1 -1.414 y1 -0.7071 3.536 y1 0
x2 0 -0.5 x2 0

Nc =
1

This shows that the pole −0.5 is not controllable.

The observability staircase form of a system is given by

[
UT AU UT B

CU D

]
=




A11 0 B1

A21 A22 B2

C1 0 D


 , (5)

where U is orthogonal and the subsystem
[

A11 B1

C1 D

]
is observable. The matrix A22 contains all

unobservable poles. The syntax of the corresponding SLICOT function slobsf is analoguous to slconf.
By a combination of the controllability and observability staircase forms, any system can be trans-

formed into the form
[

UT AU UT B
CU D

]
=




A11 A12 A13 B1

0 A22 A23 B2

0 0 A33 0
0 C2 C3 D


 . (6)

The subsystem
[

A22 B2

C2 D

]
, which is both controllable and observable, represents a minimal realization

of the original system and can be computed with slminr.
3Arguments inside curly brackets are optional.
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2.1.3 Norms

The L2 norm of a continuous-time or discrete-time LTI system sys, without poles on the imaginary axis or
unit circle, respectively, is computed with the SLICOT function slh2norm, using the call slh2norm(sys,2).
For a continuous-time system, the L2 norm is given by

‖G‖2 =

√
1
2π

∫ ∞

−∞
‖G(ıω)‖2F dω,

where G is the TFM de�ned in (3) and ‖ · ‖F denotes the Frobenius norm of a matrix. If the system is
unstable, a right coprime factorization with inner denominator of G is �rst computed, and then a state-
space representation of the numerator is used to compute the norm [34]. The L2 norm coincides with
the H2 norm for an asymptotically stable system, and it can then be computed using slh2norm(sys).
The matrix D must be zero in the continuous-time case. Speci�cally, the H2 norm is de�ned in this case
by [18, Section 3.3.3]

‖G‖2 =
√

trace(BT WoB),

where Wo is the observability Gramian, i.e., the solution of the second Lyapunov equation in (12),
Section 4. Such equations are solved with the method mentioned in Subsection 2.2.

The L∞-norm of a continuous-time or discrete-time LTI system sys is computed using the call
slinorm(sys). The L∞-norm is �nite if and only if sys has no poles on the imaginary axis or unit
circle, respectively. For a continuous-time system, the L∞-norm is de�ned by [18, Section 3.2.2]

‖G‖∞ = sup
ω∈IR

σmax(G(ıω)),

where σmax(M) denotes the maximum singular value of the matrix M . An additional output argument
in [ninf,fpeak] = slinorm(sys) returns the peak frequency fpeak at which the gain ‖G(ıω)‖2 =
σmax(G(ıω)) attains ‖G‖∞. The L∞-norm coincides with the H∞-norm for an asymptotically stable
system. The function slinorm implements re�nements of the algorithms in [12, 14].

In the discrete-time case, slh2norm and slinorm compute

‖G‖2 =

√
1
2π

∫ π

−π

‖G(
eıθ

)‖2F dθ, ‖G‖∞ = sup
θ∈[−π,π]

σmax

(
G

(
eıθ

))
,

respectively.
The Hankel norm of a system is computed using slhknorm. For an unstable system, slhknorm �rst

separates the stable and unstable subsystems and returns the Hankel norm of the stable subsystem. The
Hankel (semi-)norm of (1) or (2) is de�ned as the maximum Hankel singular value of the associated
system. The Hankel singular values are calculated as the positive square roots of the eigenvalues for the
product of the controllability Gramian and the observability Gramian, which are the solutions of the
Lyapunov equations (12), or of the corresponding Stein equations, in the discrete-time case. Formulae
for computing the best approximation to a given stable system G can for instance be found in [3, 28] and
references therein.

2.2 Linear Matrix Equations

The need for solving a Lyapunov equation

AT X + XA = W, (7)
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Table 1: Matrix equation solvers in SLICOT

Lyapunov AT X + XA = W [X{,sep}] = sllyap(A,W{,struct})
equation AX + XAT = W [X{,sep}] = sllyap(A,W,struct,1)

AT RT
o Ro + RT

o RoA = −CT C Ro = slstly(A,C{,struct})
ARcR

T
c + RcR

T
c AT = −BBT Rc = slstly(A,B,struct,1)

Stein AT XA−X = W [X{,sep}] = slstei(A,W{,struct})
equation AXAT −X = W [X{,sep}] = slstei(A,W,struct,1)

AT (RT
o Ro)A−RT

o Ro = −CT C Ro = slstst(A,C{,struct})
A(RcR

T
c )AT −RcR

T
c = −BBT Rc = slstst(A,B,struct,1)

Sylvester AX + XB = C X = slsylv(A,B,C{,struct})
equation AT X + XBT = C X = slsylv(A,B,C,struct,[1 1])

AXB + X = C X = sldsyl(A,B,C{,struct})
AT XBT + X = C X = sldsyl(A,B,C,struct,[1 1])

Generalized AT XE + ET XA = W [X{,sep}] = slgely(A,E,W{,struct})
Lyapunov AXET + EXAT = W [X{,sep}] = slgely(A,E,W,struct,1)
equation AT RT

o RoE + ET RT
o RoA = −CT C Ro = slgsly(A,E,C{,struct})

ARcR
T
c ET + ERcR

T
c AT = −BBT Rc = slgsly(A,E,B,struct,1)

Generalized AT XA− ET XE = W [X{,sep}] = slgest(A,E,W{,struct})
Stein AXAT − EXET = W [X{,sep}] = slgest(A,E,W,struct,1)
equation AT RT

o RoA− ET RT
o RoE = −CT C Ro = slgsst(A,E,C{,struct})

ARcR
T
c AT − ERcR

T
c ET = −BBT Rc = slgsst(A,E,B,struct,1)

where A is an n×n matrix and W is a symmetric n×n matrix, arises in several control applications, see
for example Section 4. Provided that A has no eigenvalues on the imaginary axis, the solution X is unique
and symmetric, and can be computed using the SLICOT function sllyap by typing X = sllyap(A,W).
Moreover, if A is stable and W is positive semi-de�nite then X is also positive semi-de�nite and henceforth
admits a factorized representation X = RT R. The function slstly can be used to directly compute the
factor R from a factorized right-hand side W = CT C [19]: R = slstly(A,B). Both functions provide
additional input �ags to solve a transposed version of (7) and to exploit additional structure in A. In
this way, it is possible to solve the two Lyapunov equations

A(RcR
T
c ) + (RcR

T
c )A = −BBT , AT (RT

o Ro) + (RT
o Ro)A = −CT C

simultaneously with only one Schur factorization of A:
[Q,T] = schur(A);
Rc = Q * slstly(T,Q'*B,1,1); Ro = slstly(T,C*Q,1,0) * Q';

An additional output argument [x,sep] = sllyap(A,C{,struct,trans}) returns the separation

sep(A,−AT ) = min
‖X‖F =1

‖AT X + XA‖,

which provides a measure for the accuracy of the computed solution [20].
Table 1 summarizes all linear matrix equations that can be solved with SLICOT. The optional input

argument struct indicates if matrix A (and B, for Sylvester solvers) is (are) general, or already reduced to
quasi-triangular or Hessenberg form(s). Similarly, for generalized solvers, struct indicates if the matrix
pair (A,E) is general or in generalized Schur form. See [11] for details and a performance comparison of
these functions with other software.
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2.3 Quadratic Matrix Equations

A continuous-time algebraic Riccati equation takes the form

0 = Q + AT X + XA− (L + XB)R−1(L + XB)T (8)

where Q ∈ IRn×n is symmetric, R ∈ IRm×m is symmetric positive de�nite, and A ∈ IRn×n, B ∈
IRn×m, L ∈ IRn×m. Under rather mild assumptions (see, e.g., [23]), there exists a unique solution X
that is symmetric. The command X = slcares(A,Q,R,B,L) computes this solution using Laub's Schur
method [24]. The algorithm obtains X = X2X

−1
1 from a basis

[
X1
X2

]
for the invariant subspace belonging

to the stable eigenvalues of the Hamiltonian matrix associated with (8). These eigenvalues are returned
in an additional output argument: [X,ev] = slcares(A,Q,R,B,L). A third output argument can be
speci�ed to estimate the reciprocal condition number of the linear system XT

1 X = XT
2 , from which X is

obtained.4 Furthermore, a call X = slcares(A,Q,G) solves the following special case:

0 = Q + AT X + XA−XGX.

Similarly, the function sldares addresses the discrete-time algebraic Riccati equation

X = AT XA− (L + AT XB)(R + BT XB)−1(L + AT XB)T + Q, (9)

and its special case
X = Q + AT X(I + GX)−1A.

The functions slgcare and slgdare address descriptor variants of (8) and (9), respectively. More detailed
information on solving Riccati equations with SLICOT and a comparison with other software can be found
in [10].

2.4 Structured Matrix Factorizations

SLICOT provides fast solvers for linear (least-squares) systems involving structured matrices, most no-
tably block Toeplitz matrices:

T =




T0 T1 · · · Tl

T−1 T0
. . . ...

... . . . . . . T1

T−k · · · T−1 T0




(10)

with all blocks T−k, . . . , T−1, T0, T1, . . . , Tl having the same dimension.
Given the �rst block column TC of a square and symmetric positive de�nite block Toeplitz matrix

T , the function R = fstchol(TC) computes an upper triangular matrix (Cholesky factor) R so that
T = RT R. When using [R,X] = fstchol(TC,B), also the solution to the linear system TX = B is
computed. The function X = fstsol(TC,B) solves TX = B directly, without requiring the storage of
the factor R.

For a general block Toeplitz matrix T with �rst block column TC and �rst block row TR, the function
[Q,R] = fstqr(TC,TR) computes a QR factorization T = QR, where Q is orthogonal and R is upper
triangular. Let us assume that T has full column rank. Then [Q,R,X{,Y}] = fstqr(TC,TR,B{,C})
additionally computes the matrix X that minimizes ‖TX −B‖F and the matrix Y of minimal Frobenius
norm that satis�es TT Y = C. The call [R{,X,Y}] = fstqr(TC,TR{,B,C}) omits Q and returns a
banded sparse factor R if T itself is banded. The function [X,Y] = fstlsq(TC,TR,B,C) solves both
least-squares problems directly, without requiring the storage of Q and R.

4Another SLICOT function, carecond, can be used for estimating the conditioning of (8).
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All functions mentioned above are based on variants of the generalized Schur algorithm [21] and have
a computational complexity that grows only quadratically as the matrix dimensions increase (in contrast
to the cubic growth of general-purpose solvers), see [22] for more details. The function fstmul(TC,TR,B)
computes the matrix product TB very e�ciently via fast Hartley transform [13].

2.5 Benchmark Collections

SLICOT provides �ve collections containing several academic and practical benchmark examples that
allow an evaluation of the performance of a method as well as the implementation with respect to
correctness, accuracy, and speed. Benchmarking gives also insight in the behavior of the method and
its implementation in extreme situations, i.e., for problems where the limit of the possible accuracy is
reached.

The Matlab script aredata provides data for algebraic Riccati equations: 21 di�erent examples for
the continuous-time case (8) and 19 di�erent examples for the discrete-time case (9). Some of these
examples depend on parameters that allow to vary the dimension or tune certain properties, see [1, 2]
for more details. The functions ctdsx and dtdsx generate benchmark examples for continuous-time and
discrete-time LTI systems, respectively. The functions ctlex and dtlex generate benchmark examples
for (generalized) continuous-time and discrete-time Lyapunov equations, respectively.

3 The System Identi�cation Toolbox
The SLICOT System Identi�cation Toolbox includes Matlab and Fortran tools for linear and Wiener-
type, time-invariant discrete-time multivariable systems. Subspace-based approaches MOESP (Multi-
variable Output-Error state SPace identi�cation) [39], N4SID (Numerical algorithms for Subspace State
Space System IDenti�cation) [33], and their combination, are used to identify linear systems, and to
initialize the parameters of the linear part of a Wiener system [40]. All parameters of a Wiener system
(whose nonlinear part is modeled as a single layer neural network) are then estimated using a specialized
Levenberg-Marquardt algorithm. The main functionalities of the toolbox include:

• identi�cation of linear discrete-time state space systems (A, B,C, D);

• identi�cation of state and output (cross-)covariance matrices for such systems;

• estimation of the associated Kalman gain matrix;

• estimation of the initial state;

• conversion from/to state-space to/from output normal form;

• identi�cation of discrete-time Wiener systems;

• computation of the output response of Wiener systems.

Attractive features of this toolbox include:

• possible speed-up factors larger than 10 in comparison with commonly used software tools;

• standard or fast techniques for data compression (e.g., exploitation of block Hankel structure);

• fast estimation of system models of various, speci�ed orders;

• ability to process multiple (possibly connected) data batches;
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• specialized, structure-exploiting, Levenberg-Marquardt algorithm using block QR factorization with
column pivoting;

• optionally, the quality of the intermediate results can be assessed by inspecting the associated
condition numbers.

There are 14 M-functions for linear and Wiener systems identi�cation. Four functions, slmoesp, sln4sid,
slmoen4, and slmoesm, are method-oriented and enable to e�ciently estimate models of various orders.

3.1 Performance Results

Extensive performance evaluation of the implemented system identi�cation software has been performed
using data sets from the DAISY collection, publicly available from the Internet site http://www.esat.
kuleuven.be/sista/daisy. Accuracy and e�ciency comparisons of the SLICOT linear systems identi�-
cation software and the available subspace-based techniques for 25 applications are presented in [31, 32].
Figure 1 shows such a timing comparison [31] of the SLICOT slmoen4 with fast QR factorization ver-
sus Matlab 6.5.1 n4sid with standard QR factorization and default options, but with order = n,
'N4Weight' = 'MOESP', and: (a) 'Cov' := 'CovarianceMatrix' = [ ], 'N4H' := 'N4Horizon' =
'Auto'; (b) 'Cov' = 'None', 'N4H' = 'Auto'; (c) 'Cov' = [ ], 'N4H' = [ s s s ]; (d) 'Cov' = 'None',
'N4H' = [ s s s ]. Here n is the chosen order of the system, and s is the number of block rows (see,
e.g., [32]). Clearly, the use of fast algorithms is very advantageous. Results for Wiener system identi�-
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Figure 1: slmoen4 with fast QR versus Matlab 6.5.1 n4sid with QR factorization and default options,
but order = n, 'N4Weight' = 'MOESP', and: (a) 'Cov' := 'CovarianceMatrix' = [ ], 'N4H' :=
'N4Horizon' = 'Auto'; (b) 'Cov' = 'None', 'N4H' = 'Auto'; (c) 'Cov' = [ ], 'N4H' = [ s s s ]; (d)
'Cov' = 'None', 'N4H' = [ s s s ], see also [31].

cation are presented, e.g., in [30]. Details about the algorithms and software tools related to the System
Identi�cation Toolbox are described in the SLICOT Working Notes 1998-6, 1999-3, 1999-19, 2000-4, and
2002-6, which can be found under http://www.slicot.org/.

4 The Model and Controller Reduction Toolbox
Model (order) reduction is a common task within the simulation, control, and optimization of complex
physical processes. SLICOT provides a wide variety of such reduction techniques for LTI systems of the
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form (1) or (2).
Order reduction is often an absolute necessity in the synthesis phase. The reason is that modern and

robust controllers like those based on LQG, H2, or H∞ design techniques are themselves LTI systems
of the form (1) or (2) with state-space dimension N ≥ n. Noting that technologically, only very low-
dimensions N should be used due to real-time, performance and fragility constraints, already for modest
dimensions some reduction of n or N must be achieved. The reduction of the plant model, i.e., the
reduction of n, can be achieved using model reduction techniques while the order N of the controller
can be directly reduced using controller reduction techniques, see, e.g., [28, 35, 37, 38]. In contrast to
Matlab's Control System and Robust Control Toolboxes, SLICOT o�ers several controller reduction
functions.

To simplify the description, we focus on continuous-time systems in the following. Most of the
SLICOT model and controller reduction functions can be applied to both continuous- and discrete-time
LTI systems.

The aim of model reduction is to �nd an LTI system,
˙̂x(t) = Âx̂(t) + B̂u(t),
ŷ(t) = Ĉx̂(t) + D̂u(t),

(11)

of order r, r ¿ n, such that the associated TFM Ĝ(s) = Ĉ(sIr − Â)−1B̂ + D̂ approximates the original
TFM G(s). This is motivated by the relation ‖y − ŷ‖2 = ‖G − Ĝ‖∞‖u‖2, where ‖ · ‖2 corresponds to
the L2-norm and ‖ · ‖∞ is the H∞-norm discussed in Section 2.1.3. Note that the use of ‖ · ‖∞ requires
the system to be stable. Model and controller reduction for unstable systems is possible by an additive
decomposition of the transfer function into its stable and unstable parts or by a coprime factorization
(where both factors are stable) and then applying methods for stable LTI systems to the resulting parts
of the system that are described by stable transfer functions, see, e.g., [37].

Methods that are based on attempting to minimize ‖G− Ĝ‖ are called absolute error methods while
relative error methods try to minimize ‖∆r‖, where ∆r is implicitly de�ned by G − Ĝ = ∆rG. For the
H∞-norm, the best approximation problem is unsolved so far. Nevertheless, balanced truncation and
related methods can be used to obtain good approximations using this measure. An alternative is to use
the Hankel (semi-)norm of (1), see Subsection 2.1.3.

There is a vast variety of model reduction techniques serving di�erent purposes; in case of linear
systems, it seems that modal truncation and the related techniques of substructuring and static conden-
sation, Padé and Padé-type approximations, and balancing-related truncation techniques play the most
prominent role; see the recent monographs and surveys [3, 4, 5, 7, 9, 17, 28, 29]. SLICOT's model and
controller reduction routines are all based on the latter approach. One reason is that SLICOT uses dense
linear algebra while modal as well as Padé techniques have only advantages if large and sparse systems
have to be reduced and n is too large to use dense linear algebra � regarding their model reduction
abilities, they are quite inferior to balancing-related techniques, see, e.g., [6].

Balanced truncation is based on �nding a state-space transformation which balances the controllability
Gramian Wc versus the observability Gramian Wo of the system (1) given as the solutions of the Lyapunov
equations

AWc + WcA
T + BBT = 0, AT Wo + WoA + CT C = 0. (12)

The LTI system is balanced if Wc = Wo = diag(σ1, . . . , σn), where σ1 ≥ . . . ≥ σn > 0. The σj are called
the Hankel singular values of the LTI system (1) and are system invariants. The reduced-order model
is obtained by truncating the balanced state-space representation of the system at an order r so that
σr > σr+1. The reduced-order model has several desirable properties: stability is preserved and there
exists a computable error bound

σr+1 ≤ ‖G− Ĝ‖∞ ≤ 2
n∑

k=r+1

σk (13)
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that allows an adaptive choice of r given an error tolerance. In the SLICOT Model and Controller
Reduction Toolbox, there are also several functions implementing balancing-related methods that can be
used if other system properties are to be preserved (e.g., minimum-phase) or if controller reduction is the
aim of the computation.

A disadvantage of balanced truncation is that it does not preserve steady-state performance (DC gain),
i.e., G(0) 6= Ĝ(0). This can be overcome by combining balanced truncation with singular perturbation
approximation (SPA, also called static condensation or balanced residualization). Most balancing-related
methods can also be combined with SPA.

4.1 Functionality of the Toolbox

The SLICOT Model and Controller Reduction Toolbox employs theoretically sound and numerically
reliable and e�cient techniques, including balanced truncation, singular perturbation approximation,
balanced stochastic truncation, frequency-weighting balancing, Hankel-norm approximation, coprime fac-
torization, etc. For a detailed description of the SLICOT Fortran 77 routines for model and controller
reduction see [35, 37]. The mathematical background of most of the provided techniques is described well
in [3, 28]. The toolbox includes

• order reduction for continuous-time and discrete-time LTI systems and controllers;

• order reduction for stable or unstable models/controllers;

• additive error model reduction;

• relative error model and controller reduction;

• frequency-weighted reduction with special stability/performance enforcing weights;

• coprime factorization-based reduction of state feedback and observer-based controllers.

The main features of the toolbox are:

• computational reliability using square-root and balancing-free accuracy enhancing techniques;

• high numerical e�ciency, using latest algorithmic developments and structure-exploiting algorithms;

• linear algebra based on LAPACK and the BLAS dictating the e�ciency of the functions;

• �exibility and ease-of-use;

• enhanced functionality, e.g, for controller reduction;

• standardized interfaces.

Table 2 contains the list of implemented M-functions for model and controller reduction.

4.2 Performance results

In this section we present some typical results for functions from the SLICOT Model and Controller
Reduction Toolbox. All tests are performed on a Samsung M50 notebook with 1 GB main memory, an
Intel M processor at 2.13 Ghz, running Matlab R2006a.

In the �rst set of experiments we compare bta with the corresponding functions balred from the
Matlab Control System Toolbox and balancmr from theMatlab Robust Control Toolbox. We generate
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Table 2: M-functions in the SLICOT Model and Controller Reduction Toolbox.
M-Function Functionality
bta balanced truncation for the stable part (square-root balancing-free approach)
btabal balanced truncation model reduction for the stable part (square-root approach)
bta_cf balanced truncation model reduction of the coprime factors (square-root balancing-free

approach)
btabal_cf balanced truncation model reduction of the coprime factors (square-root approach)
spa singular perturbation approximation based model reduction for the stable part (square-root

balancing-free approach)
spabal singular perturbation approximation based model reduction for the stable part (square-root

approach)
spa_cf singular perturbation approximation based model reduction of the coprime factors (square-

root balancing-free approach)
spabal_cf singular perturbation approximation based model reduction of the coprime factors (square-

root approach)
hna Hankel norm approximation based model reduction for the stable part (square-root ap-

proach)
bst balanced stochastic truncation based model reduction
fwbred frequency-weighted balancing related model reduction
fwhna frequency-weighted Hankel-norm approximation
fwbconred frequency-weighted balancing related controller reduction
sfconred coprime factorization based state feedback controller reduction

systems with A, B,C having normally distributed random entries where A is modi�ed to A ← A − µI
so that A is stable with stability margin roughly equal to 0.01. Figure 2 shows the CPU times needed
for systems of increasing order for single-input/single-output (SISO, m = p = 1) and multi-input/multi-
output (MIMO; here, m = p = 10) systems. In all cases, a reduced-order model of order r = 20 is
computed. Obviously, bta is the fastest function in all cases, speeding up computations by about 40%
compared to the already quite e�cient routine balred (which improves signi�cantly on previous Matlab
versions of balanced truncation like balancmr). Note that the accuracy of the reduced-order models is
comparable for all routines and all tests.

Due to space limitations, we only present one further experiment, comparing the routines for balanced
stochastic truncation bst from SLICOT and bstmr from theMatlab Robust Control Toolbox. (Balanced
stochastic truncation is not available in the Matlab Control System Toolbox.) In balanced stochastic
truncation, the observability Gramian used in balanced truncation is replaced by the solution of an
associated algebraic Riccati equation. Balanced stochastic truncation belongs to the class of relative-
error methods and preserves stability as well as minimum-phase. The left plot in Figure 3 shows the
performance of both methods for stable SISO systems of increasing order. Again, the SLICOT function
is signi�cantly faster than the corresponding function from the Matlab toolbox.

The right plot in Figure 3 gives an example for the accuracy that can be obtained by balanced
stochastic truncation. Here, we use an example from the SLICOT model reduction collection [15]: ISS.
The data describe a component of the international space station. Here, n = 270, m = p = 3. Shown is a
part of the Bode plot for the errors G(s)− Ĝ(s): the magnitude of the error in the transfer function from
the third input to the �rst output. (For all other input-output-channels, there is no signi�cant di�erence
in the results.) Here, bst performs slightly better for lower frequencies.

It should be stressed that despite the signi�cant advantages displayed in this section, the main advan-
tage of the SLICOT Model and Controller Reduction Toolbox is the availability of frequency-weighted
versions of balanced truncation methods for model and controller reduction. None of these are avail-
able in current Matlab toolboxes. Thus, the SLICOT Toolbox provides a much more comprehensive
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Figure 2: Comparison of Matlab functions for balanced truncation for SISO systems (left) and MIMO
(right, m = p = 10) systems.

functionality than available in Matlab so far.
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