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1 Editorial

Welcome to the nineth issue of the NICONET newsletter which informs you about the evolu-
tion of the SLICOT library and its integration in user-friendly environments such as Scilab
and MATLAB, as well as about other NICONET activities related to CACSD software devel-
opments.

Since July 1, 2002, our EC thematic network project came to its end and at present we are
finalizing our EC reports. We hope that our activity can be funded in the 6th framework.
Therefore, we submitted an Expression of Interest in June in order to improve our chances for
setting up or joining a network of excellence. Calls are coming out in the fall of this year. In
the meantime maintenance and further development of the SLICOT library will be guaran-
teed by our international society, also called NICONET, which is operational since September
2001. Any funding received through this society will be used for the further development of
the SLICOT library, as well as for the promotion and dissemination of the SLICOT software.
Sections 2 to 6 present as usual the new updates of the SLICOT library in subfields of systems
and control. In Section 7, the use of the SLICOT model reduction tools in solving large-scale
industrial modelling problems, is described. Section 8 includes a Call for papers for a Special
Issue of the journal Linear Algebra and Its Applications on Order Reduction of Large-Scale
Systems, which is a main topic of the NICONET thematic network project; moreover, two
members of the NICONET team are special editors for this Special Issue. Finally, Section 9
gives more details about the newest additions to the SLICOT library, new reports and forth-
coming events.

I hope you enjoy reading this newsletter.

Sabine Van Huffel
NICONET coordinator



2 Basic numerical SLICOT tools for control

2.1 Standard and generalized state space systems and transfer matrix fac-
torizations

Several SLICOT routines performing computations for standard and generalized state space
systems and transfer matrix factorizations, including, e.g., AB13FD and SB020D, have been
updated, and new routines have been developed and made available on the SLICOT ftp site.

The newly added routines include a solver for either the continuous-time or discrete-
time algebraic Riccati equations for descriptor systems (SGO2AD), as well as several routines
for computing the transfer function matrix of a state-space representation (A, B,C,D) of
a linear time-invariant multivariable system, using the pole-zeros method. Each element of
the transfer function matrix is returned in a cancelled, minimal form, either as a polynomial
ratio (with numerator and denominator polynomials stored either in increasing or decreasing
order of the powers of the indeterminate), or in a pole-zero-gain form. The corresponding
user-callable routines are TBO4BD and TBO4CD, respectively. Several lower-level routines have
also been written and posted on the SLICOT ftp site.

In addition, two new MEX-files and several associated M-files are available for (partial)
pole assignment, and for the computation of the periodic Hessenberg or periodic Schur decom-
position of a matrix product, using orthogonal transformations. Also, high-level interfaces
for Riccati benchmark collections have been made available in February 2002.

More details about these new developments are given in the file Release.Notes, stored
on the SLICOT ftp site,

ftp://wgs.esat.kuleuven.ac.be

directory pub/WGS/SLICOT/.

Vasile Sima, Andras Varga and Paul Van Dooren

2.2 Structured matrix computations

The SLICOT routines for structured matrix computations have been finalized in 2001, and
they were described in the previous issues of this Newsletter, as well as in the SLICOT
Working Note 2000-2, revised in June 2001. This task continued with the further development
of user-friendly MATLAB/Scilab interfaces for the newly developed routines, in particular, for
QR factorization of block Toeplitz matrices. These interfaces will be made available on the
SLICOT ftp site at the next library update.

A new report concerned with benchmarks for model reduction (SLICOT Working Note
2002-2: Y. Chahlaoui and Paul Van Dooren: A collection of benchmark examples for model
reduction of linear time invariant dynamical systems) contains models with the polynomial
structure obtained for second order mechanical systems.

Daniel Kressner, Vasile Sima and Paul Van Dooren



3 SLICOT tools for model reduction

3.1 SLICOT tools for controller reduction

The SLICOT routines and the associated toolbox for controller reduction have been finalized
in 2001, and they were described in the previous issues of this Newsletter, and in several
SLICOT Working Notes. Recently, the WEB page for this toolbox has been updated.

Andras Varga

3.2 SLICOT tools for model reduction of high order systems
3.2.1 Direct methods for model reduction

The work on direct methods has been completed, and the corresponding toolbox will be soon
available at the NICONET website. Summarizing, over thirty new parallel routines have been
implemented, standardized and documented. The main routines are presented in the next
table (which includes user-callable and auxiliary routines solving general matrix problems).

Purpose ‘

‘ Routine

PABO9AD | Computes reduced (or minimal) order balanced models using either
the SR or the BFSR B&T method

PAB09BD Computes reduced order models using the BFSR. SPA method
PABO09DDS | Computes a reduced order model by using the singular perturbation
formulas

PMBO03UD | Computes the SVD of a triangular matrix.

PSB03OT Solves a Standard Lyapunov Matrix Equation. It covers continuous-
and discrete-time systems and also transpose and transpose-free ver-
sions.

PDGEES Reduces a matrix to Schur form. Scal,LAPACK does not provide a
complete driver routine for the reduction to the Schur form of a gen-
eral matrix. A routine has been implemented for this operation,
including the routines required for the computation of the transfor-
mation matrix from the reflectors.

During the last 6 months, the work has then been oriented to end with the parallelisation
of the main SLICOT routines for reduction of stable systems (mainly ABO9AD, ABO9BD,
ABO9DD).

For this work it has been necessary to parallelise several auxiliary routines, namely MBO3UD
(routine in charge of computing the Singular Value Decomposition), TBO1ID (reduce the 1-
norm of the system matrix by using a diagonal similarity transformation applied iteratively),
and TBO1WD (reduce the system state matrix to upper real Schur form, applying the transfor-
mation to the other matrices), among others. Some of these routines were started in the last
year, but most of them have been finished in this last period of 6 months.

Once these auxiliary routines have been parallelised, the parallelisation of the main rou-
tines has been possible. First, routines which work with the system in real Schur form
and with the 1-norm reduced have been parallelised (ABO9AX, ABO9BX which have become
PABO9AY, PABO09BY). And finally, the main user routines have been parallelised, which call all
other routines.



As an example of the performance of these new routines, figure 1 shows the execution time
of the PABO9AY routine (parallel version of ABO9AX SLICOT routine). The experiments were
executed on a b-biprocessor 866 MHz Pentium III PC system linked with a Fast Ethernet
and Gigabit Ethernet LAN (each biprocessor was used as a single processor). This routine,
instead of the user-callable PABO9AD, has been chosen to show performance, because the time
in it is more depending on newly developed routines. For the PABO9AD routine, the execution
time is influenced by the ScaLAPACK routine in charge of transforming a Hessenberg matrix
to real Schur form (PDLAHQR), thus hiding the times of the newly developed routines.

PABOYAY with n=1002

PABOSAY ——

Execution time

Number of nodes

Figure 1: Time spent reducing a system in Schur form in parallel for different configurations.

This figure is an example of what is possible when using parallel algorithms. The execution
times and memory requirements are reduced with respect to the sequential implementations,
thus allowing to work with high order systems.

Vicente Hernandez, David Guerrero

3.2.2 Model reduction based on iterative solvers for computing the system
Gramians

All work has been finalized at the end of the 2001 year. Additional benchmark testing has
been done, but the results will be reported later.

Peter Benner



4 SLICOT tools for subspace identification

4.1 Standard software for nonlinear state space model identification

The previous phase of this task concentrated on the identification of multivariable nonlinear
Wiener systems. Such systems are a concatenation of a linear dynamic block followed by a
static nonlinearity. An inventory of existing algorithms focused on schemes that enable the
linear part to be represented in state space form. This inventory lead to the selection of
a combination of a variant of the subspace identification method and a single layer neural
network to model the static nonlinearity.

The standardization of the associated, planned routines for identification of nonlinear,
state space systems has been completed in 2001, but further polishing appeared as necessary
for improving the reliability and speed. The planned improvements have been performed, and
further work has been done in parallel on the other subtasks of the Task III.B (integration
of the routines in MATLAB and Scilab, selection of benchmark problems, extension of the
toolbox).

A list of the routines and a brief description of their functionality is given below. The list
includes (part of) the related mathematical and transformation routines which have been de-
veloped for the Task III.B. Most part of this list already appeared in the previous issue of this
Newsletter, but several additions and extensions have been performed since then; therefore,
the updated list is included here, for completeness. For instance, a new user-callable routine
(IBO3BD), based on a MINPACK-like, structure-exploiting Levenberg-Marquardt algorithm,
has been developed. Moreover, MDO3AD now includes an option for using a fast Cholesky
factorization algorithm. Other options allow the use of condition number estimators (instead
of checking the diagonal entries, as done in the MINPACK package), or controlled printing
of the error norms during the iterative optimization process.

Name Function

IBO3AD | to compute a set of parameters for approximating a Wiener system in a
least-squares sense, using a neural network approach and a Levenberg-
Marquardt algorithm.

IBO3BD | to compute a set of parameters for approximating a Wiener system in a
least-squares sense, using a neural network approach and a MINPACK-
like, structure-exploiting Levenberg-Marquardt algorithm.

MBO2WD | to solve a system of linear equations Az = b, with A symmetric, positive
definite, or, in the implicit form, f(A,z) = b, where y = f(A,z) is a
symmetric positive definite linear mapping from z to y, using a conjugate
gradient algorithm without preconditioning.

MBO2XD | to solve a set of systems of linear equations, ATAX = B, or, in the
implicit form, f(A)X = B, with AT A or f(A) positive definite, using
symmetric Gaussian elimination.

MBO2YD | to solve a system of linear equations Az = b, Dx = 0, in the least squares
sense, with D a diagonal matrix, given a QR factorization with column
pivoting of A.




MDO3AD

to find the parameters 6 for a function F(x,6) that give the best ap-
proximation for y = F'(x,#) in a least-squares sense using a Levenberg-
Marquardt algorithm based on conjugate gradients or Cholesky factor-
ization for solving linear systems.

MDO3BD

to find the parameters 6 for a function F(x,6) that give the best ap-
proximation for y = F'(x,#) in a least-squares sense using a Levenberg-
Marquardt algorithm based on QR factorization with block column piv-
oting.

MDO3BX

to compute the QR factorization with column pivoting of an m xn matrix
J (m > n), that is, JP = QR, where @ is a matrix with orthogonal
columns, P a permutation matrix, and R an upper trapezoidal matrix
with diagonal elements of nonincreasing magnitude, and to apply the
transformation Q7 on the error vector e. The l1-norm of the scaled
gradient is also returned.

MDO3BY

to find a value for the parameter \ such that if  solves the system
Az = b, \'/2Dz = 0, in the least squares sense, where A is an m x n
matrix, D is an n X n nonsingular diagonal matrix, and b is an m-vector,
and if 0 is a positive number, then either A = 0 and (||Dz||2 —d) < 0.19,
or A > 0and |||Dz|2 —d| <0.15. It is assumed that a QR factorization
with column pivoting of A is available, that is, AP = QR, where P is
a permutation matrix, ) has orthogonal columns, and R is an upper
triangular matrix with diagonal elements of nonincreasing magnitude.

NFO1AD

to compute the output of a Wiener system.

NFO1AY

to compute the output of a set of neural networks.

NFO1BD

to compute the Jacobian of a Wiener system.

NFO1BP

to find a value for the parameter \ such that if  solves the system
Jz = b, \Y2Dxz = 0, in the least squares sense, where .J is an m x n
matrix, D is an n X n nonsingular diagonal matrix, and b is an m-vector,
and if 0 is a positive number, then either A = 0 and (||Dz||2 —d) < 0.19,
or A > 0and |||Dz|2 —¢| <0.15. It is assumed that a QR factorization
with block column pivoting of J is available, that is, JP = QR, where P
is a permutation matrix, () has orthogonal columns, and R is an upper
triangular matrix with diagonal elements of nonincreasing magnitude
for each block.

NFO1BQ

to solve a system of linear equations Jx = b, Dx = 0, in the least squares
sense, with D a diagonal matrix, given a QR factorization with block
column pivoting of J.




NFO1BR | to solve one of the systems of linear equations Rz = b, or RTxz = b,
in the least squares sense, where R is an n X n block upper triangular
matrix, with the structure

Rl 0 - 0] Iy
0 Ry -~ 0 | Ly
0 0 - Ry| L
0 0 - 0 | Rep

with the upper triangular submatrices Ry, k = 1: £+ 1, square, and the
first £ of the same order. The diagonal elements of each block Ry have
nonincreasing magnitude. The matrix R is stored in a compressed form.
NFO1BS | to compute the QR factorization with block column pivoting of an m xn
matrix J (m > n), that is, JP = QR, where @ is a matrix with orthog-
onal columns, P a permutation matrix, and R an upper trapezoidal ma-
trix with diagonal elements of nonincreasing magnitude for each block,
and to apply the transformation Q7 on the error vector e. The 1-norm
of the scaled gradient is also returned.

NFO1BU | to compute the matrix JT J+cI, for the Jacobian J given in a compressed
form.

NFO1BV | to compute the matrix J7.J + cI, for the Jacobian J fully given, for one
output variable.

NFO1BW | to compute the matrix-vector product = < (JT.J + cI)x, where .J is
given in a compressed form.

NFO1BX | to compute z < (AT A + cI)x, where A is an m x n real matrix, and c
is a scalar.

NFO1BY | to compute the Jacobian of the error function for a neural network (for
one output variable).

TBO1VD | to convert the linear discrete-time system given as (A, B,C, D), with
initial state x(, into the output normal form, with parameter vector 6.
The matrix A is assumed to be stable. The matrices A, B, C, D and the
vector x( are transformed, so that on exit they correspond to the system
defined by 6.

TBO1VY | to convert the linear discrete-time system given as its output nor-
mal form, with parameter vector #, into the state-space representation
(A, B,C, D), with the initial state x.

TFO1MY | to compute the output sequence of a linear time-invariant open-loop
system given by its discrete-time state-space model (A, B, C, D), where
A is an nxn general matrix (the input and output trajectories are stored
differently from SLICOT Library routine TFO1MD).

The Levenberg-Marquardt algorithm using block QR factorization with column pivoting is a
specialized, structure-exploiting LAPACK-based implementation of the approach used in the
MINPACK package, developed at the Argonne National Laboratory, U.S.A. By a suitable
reordering of the parameters describing the Wiener system, the Jacobian matrices (in the



Table 2: The driver routines

Routine Function
IBO3AD Driver routine for identification of the parameter vector for a Wiener system in
a least-squares sense, using a neural network approach and conjugate gradients
or Cholesky algorithms for solving positive definite systems of linear equations.
IBO3BD Driver routine for identification of the parameter vector for a Wiener system in
a least-squares sense, using a neural network approach and a MINPACK-like,
structure-exploiting Levenberg-Marquardt algorithm.

multi-output case) could be put in a block diagonal form, with an additional block column
at the right. This structure is preserved in a QR factorization with column pivoting, if the
pivoting is restricted to each block column. This strategy makes sense in the identification
context, due to the noise components (usually, the block columns have full rank). The rank
deficient case is also covered when solving the associated linear systems. For reliability, an
option for finding the ranks by incremental condition estimation is provided.

Several additional lower-level routines have been implemented, but they have not been
included in the table above. Also, several MEX-files have been written. The SLICOT toolbox
for nonlinear state-space model identification is available since February 2002, but it has been
updated in April and June, for the new additions, extensions and improvements. The driver
routines of this toolbox are listed in Table 2, and most of the auxiliary routinees are mentioned
in the long table above.

All MEX-files for Wiener system identification and related calculations are listed in Ta-
ble 3.

Table 3: SLICOT Wiener system identification: MEX-file
interfaces to MATLAB/Scilab.

MEX-file Function

wident Computes a discrete-time model of a Wiener system using a neural network
approach and a MINPACK-like Levenberg-Marquardt algorithm.

widentc | Computes a discrete-time model of a Wiener system using a neural net-
work approach and a Levenberg-Marquardt algorithm, based on either a
Cholesky, or conjugate gradients algorithm for solving linear systems of

equations.

Wiener Computes the output of a Wiener system.

ldsim Computes the output response of a linear discrete-time system (much faster
than the MATLAB function Isim).

onf2ss Transforms a linear discrete-time system given in the output normal form
to a state-space representation.

ss2onf Transforms a state-space representation of a linear discrete-time system

into the output normal form.

The main MEX-files are wident and widentc, but the remaining MEX-files offer additional
working flexibility.



Four MATLAB M-files, which call some of the MEX-files, have been designed to simplify
the MEX-files usage, and are presented in Table 4. The system object defined in the MATLAB
Control Toolbox is used, whenever possible. No M-files corresponding to the MEX-files wident
and widentc are provided, since no simplification of their calling statements is possible.

Table 4: SLICOT Wiener system identification: M-file inter-

faces.
M-file Function
NNout Computes the output of a set of neural networks used to model the nonlinear
part of a Wiener system.
dsim Computes the output response of a linear discrete-time system (much faster
than the MATLAB function lsim).
02s Transforms a linear discrete-time system given in the output normal form

to a state-space representation.

s20 Transforms a state-space representation of a linear discrete-time system
into the output normal form.

The SLICOT Wiener identification toolbox has been completed. It has been used (via
the M- and MEX-files interfaces) to identity 22 benchmark and industrial examples from the
DAISY collection (available at the WEB site http://www.esat .kuleuven.ac.be/sista/daisy),
on which the linear identification software was also tested. All algorithms have been used, and
various options experienced. The algorithms based on Cholesky factorization and QR fac-
torization have been usually faster (and sometimes over 20 times faster) than the algorithms
based on the conjugate gradients solver.

The documentation of the use of the developed routines, and their integration into MATLAB
and Scilab via MEX-files has been documented in the SLICOT Working Note 2002-6.

Summarizing, the main achievements (for Task ITI.B) during the last six months are:

1. Implementing new algorithms and interfaces for Wiener systems identification, and de-
veloping the associated documentation.

2. Impressive speeding-up the optimization part for identification of Wiener systems, com-
pared with the initial implementation, based on conjugate gradients.

3. Improving the reliability by providing an option for using incremental condition estima-
tion in the Levenberg-Marquardt algorithm based on QR factorization. (This version
also ensures scaling invariance.)

4. Improving the functional capabilities; e.g., an option enables to track the sum of squares
of the error functions during the iterative optimization process.

5. Additional testing of the NICONET software, including 22 difficult applications from
the DAISY collection.

6. Improving the awareness of the industrial community about the capabilities and per-
formances of the SLICOT software: a report and two conference papers have been
written.

Vasile Stma and Michel Verhaegen
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5 SLICOT tools for robust control

In the last few months, the Sub-Group of robust control have been concentrating on the
development of interface with Scilab. Most of the robust control systems analysis and design
routines developed in SLICOT would be soon directly callable from Scilab. This interface
would enhance the use of SLICOT package.

The Sub-Group have also conducted a major robust design case study over this period,
the robust control of a liquid propellent rocket. Large uncertainties including the propel-
lant motion in the tanks and varying aerodynamic coefficients made the design problem
very challenging. This exercise was tackled using p-analysis and synthesis method, in both
continuous-time and discrete-time cases. Satisfactory results have been obtained. A report
on the designs is in preparation, which would be a good tutorial for control engineers and
students to consider similar design problems.

In addition to the above, a couple of new routines have been developed which are used in
the y—analysis and synthesis method.

Da-Wei Gu
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6 SLICOT tools for nonlinear systems in robotics

6.1 Nonlinear Systems Control

Two reports related to this task were released in March 2002. One of them! describes the
implemented SLICOT and MATLAB interfaces for the solution of optimization problems, by
means of the FSQP package (see issue no. 7, July 2001, of this Newsletter). The other report?
covers the SLICOT and MATLAB interfaces for the solution of nonlinear algebraic equations
systems, by means of the KINSOL package (see also issue no. 7 of this newsletter).

Another report is in preparation that will describe the work done in the optimal control
of robot manipulators. As will be explained in the report, to be released in July 2002,
two approaches have been explored for the optimal control. The initial approach restricted
the possible choices for the weight matrices in order to be able to use a simpler method. In
particular, this restriction avoids the necessity to solve a Differential Riccati Equation (DRE),
which is formulated as

X = Aoy 4 ApnX — XAy — XA X = F(t, X), )
X(0) = Xo.

Later, in a second approach, the restrictions on the weight matrices were removed, and
the solution of the DRE was carried out by means of the DRESOL package. The package
was modified in order to improve its efficiency and portability, as was described in the last
issue of this newsletter.

On the other hand, there has been important progress on the test case for this task, a
demonstrator for simulation and optimization of water supply networks, develeloped by UPV
and OMRON.

In these last 6 months we have focused on the interconnection between the hydraulic simu-
lator and an OMRON SCADA application, wich will take the test case closer to an industrial
real-time control environment. This interconnection will make it possible to simulate the
behavior of the system under any control actions, taken from the SCADA application. It will
allow to reproduce past scenarios and to compare the model results with the real values of the
water distribution network. In this way, it will be possible to make a predictive simulation
of the system in order to control different parameters (pressure, flow distribution, cost, water
quality,...). This is a first step for the consideration of an automatic control scheme. The
work of interconnection is in an advanced state and will soon be finished.

Also in the context of the same test case, there has been progress in the use of KINSOL
to carry out the hydraulic simulation. In particular, we have tested the simulation of more
complex networks, including valves and pumps. Good results have been obtained in all cases.
A report on the demonstrator will be produced and released in July 2002.

Vicente Hernandez, Fernando Alvarruiz and Enrique Arias

! Definition and Implementation of a SLICOT Interface and o MATLAB Gateway for the Solution of Non-
linear Programming Problems . SLICOT Working Note 2002-3. This report is available by anonymous ftp
from wgs.esat.kuleuven.ac.be in the directory pub/WGS/REPORTS/SLWN2002-3.ps.Z.

2 Definition and Implementation of a SLICOT Interface and a MATLAB Gateway for the Solution of Non-
linear Equations Systems . SLICOT Working Note 2002-4. This report is available by anonymous ftp from
wgs.esat.kuleuven.ac.be in the directory pub/WGS/REPORTS/SLWN2002-4.ps.Z.
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7 SLICOT: a useful tool in industry?
Application of SLICOT model reduction routines

This report presents some results on the application of SLICOT model reduction routines [1,
2, 3] for the reduction of large scale heat conduction models with 2D- and 3D geometry which
arise in the solution of inverse heat conduction problems. The heat conduction geometries
are spatially discretized by finite elements. The inputs of the resulting linear systems are the
surface heat fluxes and the outputs are interior temperatures. SLICOT’s model reduction
routines applied are Balance & Truncate and Balanced Singular Perturbation Approxima-
tion, i.e., AB09xx. The functions are called via the MATLAB gateway MEX-file sysred.m.
The computations were performed on a desktop PC and SUN-Fire 6800 workstation (single
processor). Two application examples are presented and discussed.

7.1 2D example

The first application example is a two-dimensional FEM-model of a 1”-diameter evaporation
tube. In this application the outer boundary heat flux varies along the ¢-coordinate as
shown in Fig. 2. In the model the surface heat flux variation is approximated by piecewise
linear functions which can be seen in magnification in Fig. 2. Furthermore, temperatures
at specific locations 1 — 21 inside the tube serve as the outputs of the model. A feedback
controller which controls a temperature in the tube by adjusting the heat generation rate of
the resistance heating coils was added to stabilize the open-loop unstable model.

18

Figure 2: Model of an evaporation tube, linear approximation of boundary heat fluxes, mea-
surement locations (grey dots), left, FEM-discretization (1702 nodes), right.

Model reduction was performed on a PC with an Athlon 1GHz processor and 1GB RAM.
The execution time was about 30min. A balanced singular perturbation approximation (SPA)
with a prescribed order of n, = 21 was chosen to obtain the reduced model from the original
model with state vector dimension of n = 1702. Standard tolerances were used. In Fig. 3
the frequency response magnitudes of the original and reduced transfer function are shown
for comparison. As can be seen, the approximation at low frequencies up to 10 Hz (in which
we were interested) is very good whereas higher frequencies above approx. 50 Hz are not
approximated well. It is an inherent feature of the SPA-method to yield a good approximation
at low frequencies and to preserve the steady-state gain of the system. A reduced model of
higher order than n, = 21 would yield a better approximation towards higher frequencies.

13
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Figure 3: Comparison of the frequency response of the original and reduced order transfer
function. Order of the SPA-reduced model is n, = 21.

7.2 3D example

The second example represents a very small section of a tester heater which is used in boiling
experiments [4]. The modeled test heater section is approximately 1.2mm X 1.2mm x 5mm
in size. A picture of the 3D-FEM-model of the test heater section is shown on the left
hand side of Fig. 4. In the model the boundary surface has been divided into 18 separate
triangular areas to approximate the heat fluxes by linear varying functions as shown on the
right in Fig. 4. Temperatures are measured 10um (using microthermocouples) below the
15 corner nodes of the each triangle. The discretization of the heater solid model has been
performed with tetrahedral elements on a non-uniform grid which is locally refined around the
microthermocouple locations (2562 Nodes, 9976 Elements). The non-uniform discretization
allows to represent the measurement positions in the model with accuracy while maintaining
the size of the model reasonable (the ratio of length scales in the problem is very large, 1.2mm
to 10pm).

Finally, a linear state space model with dimension n = 2562, m = 15 inputs and p = 15
outputs is obtained. Due to the integrating behaviour the model is marginally stable.

Using the numerical routines in SLICOT a reduced model with order n = 161 was ob-
tained by balancing and truncating the right coprime factorization of the state-space model
of the heater. The order of the reduced model was determined automatically. The standard
tolerances were used. Balance & Truncation was chosen, because we were interested in a
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Figure 4: 3D-FEM model of test heater section (2562 Nodes, 9976 Elements), linear approx-
imation of boundary heat fluxes, measurement locations.

good approximation at low and medium frequencies. The reduction has been performed on a
SUN-Fire 6800, 900MHz with 2GB of memory in about 2.5h.

Another large model which was recently reduced is of order n = 4850 with p = 18 inputs
and m = 18 outputs. It took approximately 19h on a SUN-Fire 6800, 900 Mhz workstation
and required 4 GB of RAM. In all cases, the reduced order models approximate the frequency
response of the original very well.

7.3 Conclusions

We successfully used the serial versions SLICOT model reduction routines to reduce large lin-
ear models obtained after spatial FE-discretization of 2D- and 3D-heat conduction geometries.
We presented two successful examples.

It must be pointed out that we also have worked with the p-analysis toolbox of MATLAB
to reduce linear FEM-models. Small models up to the order of a few hundred states can
be reduced with the p-analysis toolbox, but computation of the reduced order model is less
efficient. One example is the reduction of a model with a state vector dimension of n = 300,
four inputs and outputs. The p-analysis toolbox (sfncfbal.m) needed approx. 2h whereas
for SLICOT’s sysred.m needed only 4min and yielded even a much better approximation.
In the results obtained with the u-analysis toolbox important system properties such as the
steady-state gain of the model were not preserved. Furthermore, approximation of the model
at higher frequencies was much worse compared to the results with the routines in SLICOT.

Regarding the computation time of 19h and 4GB of RAM for the reduction of a n = 4850,
p =18, m = 18 model, we believe that a limit is almost reached concerning the problem size
of what current well-equipped workstations and direct model reduction methods for dense
systems can tackle.

However, there are some applications where a finer discretization would be advantageous
in order to resolve higher frequency components in the transfer function of the FEM-model.
Reduction of models larger than approx. n = 6000 — 7000 states is impraticable, since the
computational burden of dense model reduction techniques scales with n®. For this reason, the
problem size sometimes has to be limited either by choosing a smaller domain or a coarser
discretization, especially in three dimensional problems, since the order of the model also
scales approximately with n? regarding the dimension of the geometry. Therefore, parallel [5]
as well as iterative reduction methods for sparse systems may be very helpful in the future
to reduce even larger models arising from FEM-discretization of PDEs.
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8 Order Reduction of Large-Scale Systems. Call for papers:
Special Issue of Linear Algebra and Its Applications

Order reduction is a common theme within the simulation of complex physical processes.
Such simulations often result in very large systems. For example, large systems arise due
to accuracy requirements on the spatial discretization of fluids or structures, in the context
of lumped-circuit approximations of distributed circuit elements, such as the interconnect
or package of VLSI chips, or in simulations of micro-electro-mechanical systems (MEMS),
which have both electrical and mechanical components. Dimension reduction is generally re-
quired for purposes of expediency and/or storage reduction. Applications include compressed
representation, efficient data analysis and feature extraction, real-time analysis, construc-
tion of low-order control mechanisms, and many others. Various reduction techniques have
been devised, but many of these are described in terms that are discipline-oriented or even
application-specific even though they share many common features and origins. This special
issue is devoted to exposing the similarities of these approaches, identifying common features,
addressing application-specific challenges, and investigating how recent reduction methods
for linear systems might be applied to nonlinear problems.

LAA has previously published four special issues devoted to the field of Linear Systems and
Control: 1983 (vol. 50), 1989 (vols. 122-124), 1994 (vols. 203-204) and 2002 (to appear). The
cross fertilization between numerical linear algebra and linear system theory has been very
fruitful. Now, we feel it is time to broaden the scope of these interactions. In the past decade
there has been considerable activity in the area of dimension reduction for linear dynamical
control systems. However, dimension reduction has a much broader range of application
and interpretation. The goals of this special issue are to highlight leading approaches and
remaining problems in model reduction for linear system theory, emphasize connections to
POD, extend theory and methodology to nonlinear problems, address application-specific
techniques.

This special issue will be open to all papers with significant new results in dimension
reduction of large systems where either linear algebraic methods play an important role or
new tools and problems of linear algebraic nature are presented. Survey papers that illustrate
common themes across disciplines and application areas, and especially where Linear Algebra
techniques play a central role are highly encouraged. Papers must meet the publication
standards of LAA and will be refereed in the usual way.

Areas and topics of interest for this special issue include, but are not limited to:
e Methods and Theory for

— Linear (time-invariant and time-varying) dynamical systems

Descriptor (singular) systems

— Nonlinear dynamical systems

Second-order systems
— Passive systems

— Infinite-dimensional systems (e.g., PDE based systems)

e Application-Specific Techniques for
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— Conservative systems (e.g. Molecular Dynamics)

— Computational fluid dynamics

— Structural analysis (e.g., condensation or sub-structuring)

— Micro-electro-mechanical systems (MEMS)

— Image processing

— Chemical kinetics

e Low-Order Modeling

— Proper orthogonal decomposition (POD)

— Wavelet techniques in dimension reduction

— Reduced-order modeling of distributed circuit elements

e Low-Order Design

— Low-order filter design techniques

— Controller reduction techniques

The deadline for submission of papers is March 31, 2003, and the special issue is expected
to be published in 2004. Papers should be sent to any of its special editors:

Peter Benner

Institut fiir Mathematik, MA 4-5
TU Berlin

Strasse des 17. Juni 136

D-10623 Berlin (Germany)
benner@math.tu-berlin.de

Roland W. Freund

Bell Laboratories

Room 2C-525

700 Mountain Avenue

Murray Hill, NJ 07974-0636 (USA)
freund@research.bell-labs.com

Peter Benner
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Dept. Comput. & Appl. Mathematics
Rice University
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Houston, TX 77005-1892 (USA)

sorensen@rice.edu

Andras Varga

Institute of Robotics and Mechatronics
DLR Oberpfaffenhofen

P.O.Box 1116

D-82230 Wessling (Germany)
Andras.Varga@dlr.de



9 NICONET information corner

This section informs the reader on how to access the SLICOT library, the main product of the
NICONET project, and how to retrieve its routines and documentation. Recent updates of
the library are also described. In addition, information is provided on the newest NICONET
reports, available via the NICONET website or ftp site, as well as information about upcoming
workshops/conferences organized by NICONET or with a strong NICONET representation.

Additional information about the NICONET Thematic Network can be found from the
NICONET homepage World Wide Web URL

http://www.win.tue.nl/wgs/niconet.html

9.1 Electronic Access to the Library
The SLICOT routines can be downloaded from the WGS ftp site,

ftp://wgs.esat.kuleuven.ac.be

(directory pub/WGS/SLICOT/ and its subdirectories) in compressed (gzipped) tar files. On
line .html documentation files are also provided there. It is possible to browse through the
documentation on the WGS homepage at the World Wide Web URL

http://www.win.tue.nl/wgs/

after linking from there to the SLICOT web page and clicking on the FTP site link in the
freeware SLICOT section. The SLICOT index is operational there. Each functional “module”
can be copied to the user’s current directory, by clicking on an appropriate location in the
.html image. A “module” is a compressed (gzipped) tar file, which includes the following
files: source code for the main routine and its example program, example data, execution
results, the associated .html file, as well as the source code for the called SLICOT routines.

The entire library is contained in a file, called slicot.tar.gz, in the SLICOT root di-
rectory /pub/WGS/SLICOT/. The following Unix commands should be used for decompressing
this file:

gzip -d slicot.tar
tar xvf slicot.tar

The created subdirectories and their contents is summarized below:

slicot contains the files 1ibindex.html, make.inc, makefile, and the
following subdirectories:
benchmark_data contains benchmark data files for Fortran benchmark routines

(.dat);

doc contains SLICOT documentation files for routines (.html);

examples contains SLICOT example programs, data, and results (.f, .dat,
.res), and makefile, for compiling, linking and executing these
programs;

examples77 the same contents as in subdirectory examples, but the programs

are compliant with the Fortran 77 standard (with the MAX and/or
MIN intrinsic functions calls in PARAMETER statements removed);
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src contains SLICOT source files for routines (.f), and makefile, for
compiling all routines and creating an object library;

SLTools contains MATLAB.m files and data .mat files;

SLmex contains Fortran source codes for MEX-files (.f).

Another, similarly organized file, called slicotPC.zip, is available in the SLICOT root
directory; it contains the MS-DOS version of the source codes of the SLICOT Library, and
can be used on Windows 9x/2000/ME or NT platforms. Included are several source makefiles.

After downloading and decompressing the appropriate SLICOT archive, the user can
then browse through the documentation on his local machine, starting from the index file
libindex.html from slicot subdirectory.

9.2 SLICOT Library updates in the period January 2002—June 2002

There have been three major SLICOT Library updates during the period January 2002—
June 2002: on February 22, April 9, and June 29. Details are given in the files Release.Notes
and Release.History, located in the directory pub/WGS/SLICOT/ of the ftp site.

The major SLICOT Library update on February 22, 2002, included changes in some rou-
tines and addition of about 25 new routines. Most of the changes have been performed to
initialize some variables in certain cases. Some of them are related to the optimal workspace
length. The updated routines are: ABO1MD, ABO9HD, ABO9HX, ABO9KD, BBO1AD, BBO2AD, MAO2CD,
MBO1PD, MBO3PY, MBO3WD, SBO2RD, SBO30D, SB10RD, TBO1LD, TBO1ZD, and TGO1ED. Details are
given in the file Release .History. Few changes have been also done in the example programs
TABO9MD, TABOOND, TAB13MD, TBBO1AD, and TBBO2AD, in three benchmark data files, and in
two MEX-files (syscom and findBD).

Over 20 new user-callable and computational routines for basic control problems, and
identification of Wiener systems, have been posted on the SLICOT ftp site on February 22.
They include Identification Routines, Mathematical Routines, and Transformation Routines,
performing the following main computational tasks:

e compute a set of parameters for approximating a Wiener system in a least-squares sense,
using a neural network approach and a Levenberg-Marquardt algorithm.

e solve a system of linear equations Az = b, with A symmetric, positive definite, or, in
the implicit form, f(A, z) = b, where y = f(A, ) is a symmetric positive definite linear
mapping from z to y, using the conjugate gradient algorithm without preconditioning.

e solve a set of systems of linear equations, AT AX = B, or, in the implicit form, f(A4)X =
B, with AT A or f(A) positive definite, using symmetric Gaussian elimination.

e solve a system of linear equations Az = b, Dz = 0, in the least squares sense, with D a
diagonal matrix, given a QR factorization with column pivoting of A.

e find the parameters 6 for a function F(x,0) that give the best approximation for
y = F(z,0) in a least-squares sense using a Levenberg-Marquardt algorithm based
on conjugate gradients for solving linear systems.

e find the parameters 6 for a function F(z,#) that give the best approximation for y =
F(z,0) in a least-squares sense using a Levenberg-Marquardt algorithm based on QR
factorization with block column pivoting.
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compute the QR factorization with block column pivoting of an m xn matrix J (m > n),
that is, JP = QR, where @) is a matrix with orthogonal columns, P a permutation
matrix, and R an upper trapezoidal matrix with diagonal elements of nonincreasing
magnitude, and apply the transformation Q7 on the error vector e; the 1-norm of the
scaled gradient is also returned.

find a value for the parameter A such that if z solves the system Az = b, \/2Dz = 0,
in the least squares sense, where A is an m X n matrix, D is an n X n nonsingular
diagonal matrix, and b is an m-vector, and if § is a positive number, then either A = 0
and (||Dz||2 — d) < 0.16, or A > 0 and | ||Dz||2 — | < 0.15. It is assumed that a QR
factorization with column pivoting of A is available, that is, AP = QR, where P is a
permutation matrix, ) has orthogonal columns, and R is an upper triangular matrix
with diagonal elements of nonincreasing magnitude.

compute the output of a Wiener system.
compute the output of a set of neural networks.
compute the Jacobian of a Wiener system.

find a value for the parameter X such that if 2 solves the system Jz = b, \Y/2Dz = 0,
in the least squares sense, where J is an m X n matrix, D is an n X n nonsingular
diagonal matrix, and b is an m-vector, and if J is a positive number, then either A = 0
and (||Dz||2 — ) < 0.16, or A > 0 and |||Dz||2 — | < 0.15. It is assumed that a QR
factorization with block column pivoting of J is available, that is, JP = QR, where P
is a permutation matrix, () has orthogonal columns, and R is a block upper triangular
matrix with diagonal elements of nonincreasing magnitude for each block.

solve a system of linear equations Jx = b, Dz = 0, in the least squares sense, with D a
diagonal matrix, given a QR factorization with block column pivoting of J.

solve one of the systems of linear equations Rz = b, or R"2z = b, in the least squares
sense, where R is an n X n block upper triangular matrix, with the structure

R, 0 - 0] I
0 Ry -+ 0 | L
0 0 - Ry| I
0 0 - 0 | Ry

with the upper triangular submatrices R, k = 1: £ 4+ 1, square, and the first £ of the
same order. The diagonal elements of each block Rj; have nonincreasing magnitude.
The matrix R is stored in a compressed form.

compute the QR factorization with block column pivoting of an m xn matrix J (m > n),
that is, JP = QR, where @) is a matrix with orthogonal columns, P a permutation
matrix, and R a block upper trapezoidal matrix with diagonal elements of nonincreasing
magnitude for each block, and apply the transformation Q7 on the error vector e; the
1-norm of the scaled gradient is also returned.
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e compute the matrix J7J + cI, for the Jacobian J given in a compressed form.
e compute the matrix JTJ + ¢I, for the Jacobian J fully given, for one output variable.

e compute the matrix-vector product 2 < (JZ.J 4 cI)z, where .J is given in a compressed
form.

e compute z < (AT A + cI)z, where A is an m x n real matrix, and c is a scalar.

e compute the Jacobian of the error function for a neural network (for one output vari-
able).

e convert the linear discrete-time system given as (A, B, C, D), with initial state zg, into
the output normal form, with parameter vector #. The matrix A is assumed to be
stable. The matrices A, B,C, D and the vector x( are transformed, so that on exit they
correspond to the system defined by 6.

e convert the linear discrete-time system given as its output normal form, with parameter
vector 6, into the state-space representation (A, B, C, D), with the initial state x.

e compute the output sequence of a linear time-invariant open-loop system given by its
discrete-time state-space model (A, B, C, D), where A is an n X n general matrix (the in-
put and output trajectories are stored differently from SLICOT Library routine TFO1MD).

All test (example) programs which contained MAX and/or MIN intrinsic functions calls in
PARAMETER statements have now a version without these calls, in order to be compliant with
the Fortran 77 standard. The modified files (over 100), and all the other example programs
(.f), data (.dat) and results (.res) files, are stored in the subdirectory examples77.

The MATLAB 5.3 toolboxes have been saved in a new subdirectory, called SLToolboxes5,
of the MatlabTools directory of the ftp site. The former subdirectory SLToolboxes now
contains the MATLAB 6 versions of all files, including .d11 files. The MATLAB 5.3 files will
not be updated in the future.

A new MEX-file and associated M-file for generating benchmarck examples for algebraic
Riccati equations have been made available.

The SLICOT Library update on April 9, 2002, included corrections in few routines (AGO8BD,
AGO8BY, IBO3BD, MB04VX, MDO3BF, SBO3MX, SBO30D, SGO3BD, TBO1UD, TBO1VD, and TBO1VY),
an example program (TAGO8BD), four M-files, and six .html files. Details are given in the file
Release.History.

Ten new or updated routines, belonging to the chapters Identification Routines, Mathe-
matical Routines and Nonlinear Systems, have been posted on the SLICOT ftp site. These
routines have the following main functionality:

e compute a set of parameters for approximating a Wiener system in a least-squares
sense, using a neural network approach and a conjugate gradients or Cholesky-based
Levenberg-Marquardt algorithm.

e find the parameters theta for a function F'(z,0) that give the best approximation for
y = F(z,0) in a least-squares sense using a Levenberg-Marquardt algorithm based on
conjugate gradients or Cholesky factorization for solving linear systems.
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e evaluate the functions and Jacobian matrices for optimizing the parameters of the non-
linear part of a Wiener system (initialization phase).

e evaluate the functions and Jacobian matrices for solving a standard nonlinear least
squares problem using conjugate gradients or Cholesky-based solvers.

e compute the matrix J7.J 4+ cI, for the Jacobian J either given in a compressed form, or
fully given (for one output variable).

e compute the matrix-vector product x < (J7.J + ¢I)xz, for the matrix .J either given in
a compressed form, or fully given, where c is a scalar.

Three new test programs, a MEX-file and an M-file, covering the above functionality, have
been included. The toolbox for nonlinear Wiener systems identification has been updated
and completed.

A new directory (of the SLICOT ftp site root directory), plicmr, and its subdirectory,
doc, now contain the on-line .html documentation files for the currently available parallel
SLICOT library routines (for large order model reduction).

The SLICOT Library update on June 29, 2002, included corrections in the routines
AB13FD, IBO3AD, IBO3BD, MBO3NY, MCO10D, MCO1PD, and SB020D. Details are given in the
file Release.Notes.

Several new routines belonging to the chapters Mathematical Routines, Synthesis Routines,
and Transformation Systems, have been posted on the SLICOT ftp site. These routines have
the following main functionality:

e compute the coefficients of a real polynomial P(x) from its zeros. The coefficients are
stored in decreasing order of the powers of z.

e solve either the continuous-time or discrete-time algebraic Riccati equations for descrip-
tor systems.

e compute the transfer function matrix G of a state-space representation (A, B,C, D)
of a linear time-invariant multivariable system, using the pole-zeros method. Each
element of the transfer function matrix is returned in a cancelled, minimal form, with
numerator and denominator polynomials stored either in increasing or decreasing order
of the powers of the indeterminate.

e separate the strictly proper part from the constant part of a proper transfer function
matrix.

e compute the sum of an p-by-m rational matrix and a real p-by-m matrix.

e compute the gain of a single-input single-output linear system, given its state-space
representation (A, b, ¢, d), and its poles and zeros. The matrix A is assumed to be in an
upper Hessenberg form.

e compute the transfer function matrix G of a state-space representation (A, B,C, D) of
a linear time-invariant multivariable system, using the pole-zeros method. The transfer
function matrix is returned in a minimal pole-zero-gain form.
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Three associated example programs have been written.

In addition, two new MEX-files, performing (partial) pole assignment, and computing the
periodic Hessenberg or periodic Schur decomposition of a matrix product, respectively, and
four associated M-files have been made available on the SLICOT ftp site.

The files describing the Tasks I.A, ITI.A, ITI.B, and IV.A have been updated.

9.3 New NICONET Reports

Recent NICONET reports (available after January 2002), that can be downloaded as com-
pressed postscript files from the World Wide Web URL

http://www.win.tue.nl/wgs/reports.html
or from the WGS ftp site,
ftp://wgs.esat.kuleuven.ac.be
(directory pub/WGS/REPORTS/), are the following:

e Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti, Rafael Mayo. FEn-
hanced Services for Remote Model Reduction of Large-Scale Dense Linear Systems (file
SLWN2002-1.ps.Z, January 2002).

This paper describes enhanced services for remote model reduction of large-scale, dense
linear time-invariant systems. Specifically, we describe a mail service and a web service
for model reduction on a cluster of Intel Pentium-IT architectures using absolute and
relative error methods. Experimental results show the appeal and accessibility provided
by these services.

e Y. Chahlaoui and P. Van Dooren. A collection of Benchmark examples for model reduc-
tion of linear time invariant dynamical systems (file SLWN2002-2.ps.Z, February 2002
and revised in March 2002).

In order to test the numerical methods for model reduction we present here a benchmark
collection, which contain some useful real world examples reflecting current problems

in applications. All simulations were obtained via Matlab and some SLICOT programs
of NICONET.

e F. Alvarruiz and V. Hernandez. Definition and implementation of a SLICOT inter-
face and a MATLAB Gateway for the solution of non-linear programming problems (file
SLWN2002-3.ps.Z, March 2002).

This paper presents SLICOT and MATLAB interfaces for the FSQP package, which
stands for Feasible Sequential Quadratic Programming. The SLICOT interface enables
the user to call the FSQP package by means of a subroutine with a SLICOT- compliant
calling sequence. By means of the MATLAB interface the user can call the package from
MATLAB, defining the problem by means of MATLAB functions. The interfaces could
be extended in the future in order to consider other nonlinear programming solvers,
although some restructuring of the interfaces would be necessary.
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e F. Alvarruiz and V. Hernandez Definition and implementation of a SLICOT inter-
face and a MATLAB Gateway for the solution of nonlinear equations systems (file
SLWN2002-4.ps.Z, March 2002).

This paper presents SLICOT and MATLAB interfaces for the KINSOL software pack-
age, used for solving nonlinear equations systems. The SLICOT interface enables the
user to call the KINSOL package by means of a subroutine with a SLICOT-compliant
calling sequence. By means of the MATLAB interface the user can call the package from
MATLAB, defining the problem by means of MATLAB functions. The interfaces could
be extended in the future in orde to consider other nonlinear equations systems solvers,
although some restructuring of the interfaces would be necessary.

e Rene Schneider, Andreas Riedel, Vincent Verdult, Michel Verhaegen, Vasile Sima. SLI-
COT System Identification Toolbox for Nonlinear Wiener Systems (file SLWN2002-6.ps.Z,
June 2002).

This report summarizes the achievements and deliverables of the Task III.B of the
NICONET Project. After a short description of the nonlinear Wiener system iden-
tification problem, the numerical algorithms implemented in the SLICOT Nonlinear
Systems Identification Toolbox are surveyed. The associated Fortran routines are then
listed and their functional abilities are outlined. The developed interfaces to MATLAB
or Scilab, as well as examples of use are presented.

Previous NICONET/WGS reports are also posted at the same address.

9.4 Forthcoming Conferences

Forthcoming Conferences related to the NICONET areas of interest, where NICONET part-
ners submitted proposals for NICONET /SLICOT-related talks and papers, and disseminated
or will disseminate information and promote SLICOT, include the following;:

e TFAC Congress, Barcelona, July 2002.

e SIAM’s 50th Anniversary and 2002 Annual Meeting, Philadelphia Marriott Hotel, July
8-12, 2002.

e MTNS, “Mathematical Theory of networks and Systems” meeting 2002, University of
Notre Dame, South Bend, Indiana, USA, August 12-16, 2002, see
http://www.nd.edu/ mtns/

e Joint “IEEE Conference on Control Applications” and “IEEE Conference on Computer
Aided Control Systems Design”, September 17-20, 2002, Scottish Exhibition & Confer-
ence Centre, Glasgow, Scotland.

Vasile Sima
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