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1 Editorial

Welcome to the eighth issue of the NICONET newsletter which informs you about the evolu-
tion of the SLICOT library and its integration in user-friendly environments such as Scilab
and MATLAB, as well as about other NICONET activities related to CACSD software devel-
opments.

In the last 6 months several important events happened which are worthwhile to be mentioned.
First of all, as mentioned in our previous newsletter, our new EC proposal we submitted in
the Growth programme (accompanying measures) in March 2001 hasn’t been approved. We
have to wait now for new calls in the 6th framework before we can resubmit our proposal. In
the mean time we asked the EC to extend our present thematic network project NICONET
with 6 months until July 1, 2002, and this extension has been approved. Since September
2001 our international society, also called NICONET, is operational. Any funding received
through this society is used for the further development of the SLICOT library and will be
needed in periods where no EC funding is available. Simultaneously, this society promotes
and supervises the dissemination of the SLICOT software.

Secondly, we want to mention that we had a very successful training course in Bremen at the
end of September. A detailed report describing the highlights of this workshop is included in
Section 9. Sections 2 to 6 present as usual the new updates of the SLICOT library in subfields
of systems and control. Section 7 discusses how SLICOT subspace identification software im-
proves the performance of loadspeakers. In Section 8, the use of SLICOT in Controllabs
Products, a small spinoff company in the Netherlands, is discussed. Finally, Section 10 gives
more details about the newest additions to the SLICOT library, new reports and forthcoming
events.

I hope you enjoy reading this newsletter.

Sabine Van Huffel
NICONET coordinator



2 Basic numerical SLICOT tools for control

2.1 Standard and generalized state space systems and transfer matrix fac-
torizations

This task continued in order to provide basic routines required by other tasks. Therefore, the
corresponding routines are mentioned in other sections of this Newsletter issue.

Vasile Sima, Andras Varga and Paul Van Dooren

2.2 Structured matrix computations

The following routines were recently implemented as basic routines for structured matrix
computations :

Name Function
DEOIPD | Convolution or deconvolution of two real signals using Hartley trans-
form.

DGO10OD | Scrambled discrete Hartley transform of a real signal.

MBO2FD | Incomplete Cholesky factor of a positive definite block Toeplitz matrix.
MBO02GD | Cholesky factorization of a band symmetric positive definite block
Toeplitz matrix.

MBO02HD | Cholesky factorization of the matrix 77T, with T' a band block Toeplitz
matrix of full rank.

MBO02ID | Solution of over- or underdetermined linear systems with a full rank
block Toeplitz matrix.

MBO02JD | Full QR factorization of a block Toeplitz matrix of full rank.

MBO02JX | Low rank QR factorization with column pivoting of a block Toeplitz
matrix.

MBO02KD | Computation of the product C = «aop(T)B + SC, with T a block
Toeplitz matrix.

These Fortran programs will be accessed in the interactive environment MATLAB or scilab
via the same mex and m.files as for the earlier Fortran codes. The associated test functions
and a MATLAB 5.3 demonstration package are available via the NICONET homepage. The
revised report SLWN2000-2 describes the functionality of these routines.

[1] D. Kressner and P. Van Dooren, Factorizations and linear system solvers for matrices
with Toeplitz structure, SLICOT Working Note 2000-2 (revised), June 2001.

Daniel Kressner, Vasile Sima and Paul Van Dooren



3 SLICOT tools for model reduction

3.1 SLICOT tools for controller reduction

A new user callable routine AB09JD for the frequency-weighted Hankel-norm approximation
method with invertible proper weights has been implemented, together with three lower level
routines: AB0O9JV and AB09JW to compute stable projections for left and right frequency
weights using a descriptor system formulation, and AB09JX for testing eigenvalues or gener-
alized eigenvalues for stability /antistability. Further, 4 new user callable basic routines have
been implemented for the special needs of model/controller reduction software: AGO7BD
to perform descriptor system inversion, AB13DD to compute the Ls.-norm of a system,
ABO8MD to determine the normal rank of the transfer-function matrix of a state-space sys-
tem, and TGO1BD to reduce a descriptor system to orthogonal generalized Hessenberg form.
These new basic routines enter in SLICOT as contributions to Basic numerical SLICOT tools
for control.

The newly developed model and controller reduction routines are called by user-friendly
interfaces defined in 6 mex-files and 8 m-files for MATLAB and scilab. The implemented
mex-functions complement the previously available mex-function sysred. All functions can
reduce both stable and unstable as well as continuous- and discrete-time systems or con-
trollers. The frequency-weighted model reduction functions can also be used for unweighted
reduction. Besides the model/controller reduction mex-functions, a new, completely general
mex-function has been implemented to compute the Ly,-norm of a standard or descriptor
system. The implemented new mex-functions for model/controller reduction are:

Name | Function

bstred | balanced stochastic truncation based model reduction (based on ABO9HD)
fwered | frequency-weighted balancing related model reduction (based on AB09ID)
fwehna | frequency-weighted Hankel-norm approximation (based on AB09JD)

conred | frequency-weighted balancing related controller reduction (based on SB16AD)

sfored | coprime factorization based reduction of state feedback controllers (based on
SB16BD and SB16CD)
linorm | Loo-norm of a linear time-invariant system (based on AB13DD)

Easy-to-use m-functions have been implemented for MATLAB and scilab to provide a con-
venient interface to the implemented mex-functions. These tools allow to work directly with
control objects as defined in the Control Toolbox of MATLAB or in scilab. The implemented
m-functions for model/controller reduction are:

bst balanced stochastic truncation based model reduction
fwbred frequency-weighted balancing related model reduction
fwhna frequency-weighted Hankel-norm approximation

fwbconred | frequency-weighted balancing related controller reduction

sfconred | coprime factorization based state feedback controller reduction
sysredset | creation of a SYSRED options structure
sysredget | extracts the value of a named parameter from a SYSRED options structure

slinorm L-infinity norm of a state-space system




To manage the combinatorial complexity of the multitude of possible user options, a special
SYSRED structure has been defined. Two special functions sysredset and sysredget have
been implemented to create/setup this structure and to extract values of option parameters.
The m-function slinorm is an interface to the linorm mex-function.

An intensive testing of all implemented routines has been performed via the newly de-
veloped m- and mex-files. For this purpose, both special benchmark problems for controller
reduction as well as industrial examples have been used to investigate the capabilities of dif-
ferent approaches to perform controller reduction which preserves closed-loop stability and
performance. Four test suites for testing the implemented m- and mex-functions have also
been implemented. A controller reduction toolbox has been prepared and made available via,
the SLICOT library ftp-site.

Andras Varga

3.2 SLICOT tools for model reduction of high order systems
3.2.1 Direct methods for model reduction

During the last 6 months, the work has focused on the adaptation of the newly developed
parallel Lyapunov solver (see previous newsletter) to make it consistent with the sequential
SLICOT routine performing the same task (SB0O30U). In particular, the SLICOT routines in
charge of the model reduction problem expect to pass the matrices of the Lyapunov equation
and receive the solution of it in a different way of that used by the initial parallel solver (which
was developed in a more general form). This led to the release of the new parallel PSBO30U
routine.

The work is now being oriented to the parallelisation of the main routines for reduction of
stable systems (ABO9AD, ABO9BD, ABO9DD). This requires first the parallelisation of several
auxiliary routines used by them: MBO3UD (routine in charge of computing the Singular Value
Decomposition), TBO1ID, TBO1WD, .... The parallel versions of most of these auxiliary routines
have already been implemented.

Vicente Hernandez, David Guerrero

3.2.2 Model reduction based on iterative solvers for computing the system
Gramians

The integration on parallel computers of the model reduction subroutines based on iterative
solvers was finalized. Table 1 lists the user-callable subroutines that have been integrated
into PSLICOT.

Besides, 12 lower-level subroutines were also tested and integrated into PSLICOT. All
routines have been successfully installed on a cluster of Linux-PCs with 32 nodes.

The benchmark testing was finalized in June 2001. The following benchmark problems
have been used:

e For model reduction performance and accuracy tests, examples with prescribed order
of the minimal realization and the rank of the Gramians of the systems have been
generated.

e A finite-element (FEM) model for a control problem for 1-dimensional heat flow has
been used for testing scalability with growing order n of the system.



‘ Routine ‘ Purpose ‘

PAB0O9AX computes reduced (or minimal) order balanced models using
either the SR or the BFSR B&T method.

PAB09BX computes reduced order models. using the BFSR or SR SPA
method.

PAB09CX computes reduced order models using the optimal HNA method
based on SR balancing.

PAB0O9DD applies the singular perturbation approximation formulae to a
general system.

PSB03ODC | solution of coupled stable Lyapunov equations for full-rank fac-
tor using sign function method.

PSB030ODD | solution of coupled stable Stein equations for full-rank factor
using squared Smith iteration or sign function method.
PSB04MD solves a stable Sylvester equation using the sign function
method.

PMBO5RD | computes the sign function of a matrix using the Newton iter-
ation.

PMBO03TD | computes the singular value decomposition of a matrix product.
PMBO030OX | estimates the rank of a triangular matrix using an incremental
condition estimator.

Table 1: PSLICOT subroutines for absolute error model reduction based on iterative solvers

e For parallel performance, random examples with n < 4000 were generated.
For industrial case studies, the following problems were selected:

e A control problem for a catalytic tubular reactor model from ABB Corporate Research
with state-space dimension n = 1171. The numbers of inputs and outputs are m = 6
and p = 4.

e An FEM model for optimal cooling of steel profiles with state-space dimension n = 3113
and 6 inputs and outputs.

Figure 1 shows the performance of some of the implemented routines for some of the bench-
mark problems and industrial case studies. The left plot shows the Bode diagram comparing
the frequency responses (u; to y1) of the catalytic tubular reactor model and the SPA reduced
order model computed by PABO9BX. A good match is evident from the plot. The right plot
displays execution times for computing reduced-order models using BT for randomly gener-
ated data. The result on 1 processor is obtained using the SLICOT routine ABO9AD whereas
the results on more than 1 processor show the performance of PABO9AX. The efficiency of the
parallel method is clearly indicated by the (almost) optimal speed-up that can be concluded
from the decreasing execution times.

Rather than providing a MATLAB toolbox, the deliverable here was chosen to be an
environment in which users can easily use the parallel algorithms without having to install
the routines themselves. We chose to make this possible by providing a mail and a web
service for remote model reduction. Here, a user can submit the data related to his model
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Figure 1: Performance of PSLICOT model reduction routines.

via e-mail' or an interactive web form? to a remote parallel computer (a Linux cluster). The
user only selects the method for model reduction. Then the corresponding PSLICOT routine
is called and the reduced order model is computed on the remote system. The data of the
reduced order model and some additional information are then sent back to the user via e-
mail. The details of this service are described in the SLICOT Working Note 2002-1 where also
more computational results involving the benchmark examples and industrial case studies are
reported.

Peter Benner

! Available at http://spine.act.uji.es/ plicmr/pmrRemote/pmrMail
?Available at http://spine.act.uji.es/~plicmr/pmrW3/pmri3.html



4 SLICOT tools for subspace identification

4.1 Standard software for nonlinear state space model identification

The effort in this task concentrated on the identification of multivariable nonlinear Wiener
systems. Such systems are a concatenation of a linear dynamic block followed by a static
nonlinearity. An inventory of existing algorithms focused on schemes that enable the linear
part to be represented in state space form. This inventory lead to the selection of a combina-
tion of a variant of the subspace identification method and a single layer neural network to
model the static nonlinearity.

The standardization of the associated, planned routines for identification of nonlinear,
state space systems has been completed, but further polishing appeared as necessary for
improving the reliability and speed. Many improvements have been already performed, but
this activity will continue in the next months. In parallel, further work will be done for
integration of the routines in MATLAB and scilab, selection of benchmark problems, and
extension of the toolbox.

A list of the routines and a brief description of their functionality is given below. The
list includes (part of) the related mathematical and transformation routines which have been
developed for identifying Wiener systems.

Name Function

IBO3AD | to compute a set of parameters for approximating a Wiener system in a
least-squares sense, using a neural network approach and a Levenberg-
Marquardt algorithm.

MBO2WD | to solve a system of linear equations Az = b, with A symmetric, positive
definite, or, in the implicit form, f(A,z) = b, where y = f(A,x) is
a symmetric positive definite linear mapping from z to y, using the
conjugate gradient algorithm without preconditioning.

MBO2XD | to solve a set of systems of linear equations, ATAX = B, or, in the
implicit form, f(A)X = B, with AT A or f(A) positive definite, using
symmetric Gaussian elimination.

MBO2YD | to solve a system of linear equations Az = b, Dx = 0, in the least squares
sense, with D a diagonal matrix, given a QR factorization with column
pivoting of A.

MDO3AD | to find the parameters 6 for a function F(z,0) that give the best ap-
proximation for y = F'(x,#) in a least-squares sense using a Levenberg-
Marquardt algorithm based on conjugate gradients for solving linear
systems.

MDO3BD | to find the parameters 6 for a function F(z,6) that give the best ap-
proximation for y = F'(x,#) in a least-squares sense using a Levenberg-
Marquardt algorithm based on QR. factorization with column pivoting.
MDO3BX | to compute the QR factorization with column pivoting of an m xn matrix
J (m > n), that is, JP = QR, where @ is a matrix with orthogonal
columns, P a permutation matrix, and R an upper trapezoidal matrix
with diagonal elements of nonincreasing magnitude, and to apply the
transformation Q7 on the error vector e. The l-norm of the scaled
gradient is also returned.




MDO3BY

to find a value for the parameter \ such that if x solves the system
Az = b, \Y/2Dz = 0, in the least squares sense, where A is an m X n
matrix, D is an n X n nonsingular diagonal matrix, and b is an m-vector,
and if 0 is a positive number, then either A = 0 and (||Dz||2 — d) < 0.19,
or A > 0and |||Dz|2 —6| <0.15. It is assumed that a QR factorization
with column pivoting of A is available, that is, AP = @R, where P is
a permutation matrix, ¢} has orthogonal columns, and R is an upper
triangular matrix with diagonal elements of nonincreasing magnitude.

NFO1AD

to compute the output of a Wiener system.

NFO1AY

to compute the output of a set of neural networks.

NFO1BD

to compute the Jacobian of a Wiener system.

NFO1BP

to find a value for the parameter A such that if x solves the system
Jz = b, \Y2Dxz = 0, in the least squares sense, where .J is an m x n
matrix, D is an n X n nonsingular diagonal matrix, and b is an m-vector,
and if 0 is a positive number, then either A = 0 and (||Dz||2 — ) < 0.19,
or A > 0and |||Dz|2 —d| <0.15. It is assumed that a QR factorization
with block column pivoting of J is available, that is, JP = QR, where P
is a permutation matrix, () has orthogonal columns, and R is an upper
triangular matrix with diagonal elements of nonincreasing magnitude
for each block.

NF01BQ

to solve a system of linear equations Jx = b, Dx = 0, in the least squares
sense, with D a diagonal matrix, given a QR factorization with block
column pivoting of .J.

NFO1BR

to solve one of the systems of linear equations Rz = b, or RTxz = b,
in the least squares sense, where R is an n X n block upper triangular
matrix, with the structure

Rl 0 - 0| I
0 Ry -~ 0 | Ly
0 0 - Ry| L
0 0 - 0 | Repq

with the upper triangular submatrices Ry, k = 1: £+ 1, square, and the
first ¢ of the same order. The diagonal elements of each block Ry have
nonincreasing magnitude. The matrix R is stored in a compressed form.

NFO01BS

to compute the QR factorization with block column pivoting of an m xn
matrix J (m > n), that is, JP = QR, where @ is a matrix with orthog-
onal columns, P a permutation matrix, and R an upper trapezoidal ma-
trix with diagonal elements of nonincreasing magnitude for each block,
and to apply the transformation Q7 on the error vector e. The 1-norm
of the scaled gradient is also returned.

NFO1BU

to compute the matrix J7 J+cI, for the Jacobian J given in a compressed
form.




NFO1BV | to compute the matrix J7.J + cI, for the Jacobian J fully given, for one
output variable.

NFO1BW | to compute the matrix-vector product z < (J'J + cl)z, where J is
given in a compressed form.

NFO1BX | to compute z < (AT A + cI)z, where A is an m x n real matrix, and ¢
is a scalar.

NFO1BY | to compute the Jacobian of the error function for a neural network (for
one output variable).

TBO1VD | to convert the linear discrete-time system given as (A, B,C, D), with
initial state xg, into the output normal form, with parameter vector 6.
The matrix A is assumed to be stable. The matrices A, B, C, D and the
vector x( are transformed, so that on exit they correspond to the system
defined by 6.

TBO1VY | to convert the linear discrete-time system given as its output nor-
mal form, with parameter vector #, into the state-space representation
(A, B,C, D), with the initial state xy.

TFO1MY | to compute the output sequence of a linear time-invariant open-loop
system given by its discrete-time state-space model (A, B, C, D), where
A is an nx n general matrix (the input and output trajectories are stored
differently from SLICOT Library routine TFO1MD).

The Levenberg-Marquardt algorithm using block QR factorization with column pivoting is a
specialized, structure-exploiting LAPACK-based implementation of the approach used in the
MINPACK package, developed at the Argonne National Laboratory, U.S.A. By a suitable
reordering of the parameters describing the Wiener system, the Jacobian matrices (in the
multi-output case) could be put in a block diagonal form, with an additional block column
at the right. This structure is preserved in a QR factorization with column pivoting, if the
pivoting is restricted to each block column. This strategy makes sense in the identification
context, due to the noise components (usually, the block columns have full rank). The rank
deficient case is also covered when solving the associated linear systems. For reliability, an
option for finding the ranks by incremental condition estimation is provided.

Several additional lower-level routines have been implemented, but they have not been
included in the table above. Also, some mexfiles have been developed. They could be used
both for testing purposes, but also for problem solving. The documentation of the use of
the developed routines, and their integration into MATLAB and scilab via mexfiles will be
documented in a SLICOT Working Note (a preliminary version has already been produced).

Vasile Stma and Michel Verhaegen
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5 SLICOT tools for robust control

The NICONET Robust Control Sub-Group has been concentrating on, in the last six months,
the development of robust control subroutines, testing and case studies, as well as on devel-
opment of interface with scilab.

The following subroutines were completed and have been included in the SLICOT library:

e SB10ZD, implementing the discrete-time H, loop shaping design procedure for the
general case of non-zero D term;

e SB10AD, implementing the ., optimal design using bisection method to decide the
minimum -y;

e SB10FD, has been further modified for sub-optimal H ., design.

In addition, another subroutine which aims at improving the coding of u-calculation is
currently in development.

For testing of developed subroutines and as part of building up the benchmark/industrial
case study collections, several practical, application design examples were studied and com-
pleted during the period. In particular, a disc drive servo system robust design has been
conducted. In this exercise, the H,, mixed sensitivity optimisation, LSDP design and pu-
synthesis and analysis methods have been applied. Satisfactory results were obtained with
the SLICOT software in all the designs.

The interface between SLICOT and scilab at higher (design) levels is currently being
developed. The following SLICOT routines have so far been successfully included in scilab:

e H ., optimal design of continuous-time systems;
e H., optimal design of discrete-time systems;

e Eigenstructure computation and design;

e 4 computation.

Together with other partners, the NICONET Robust Control Sub-Group introduced the
robust control routines developed in this project and related theories at the 4th Industrial
Workshop at Bremen in September, and presented successful design exercises.

Da-Wei Gu
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6 SLICOT tools for nonlinear systems in robotics

6.1 Nonlinear Systems Control

During the last 6 months, a High Performance Computing sequential version of the DRESOL
package has been implemented. DRESOL package is a collection of subroutines for the nu-
merical integration of differential Riccati equations,

dX
- = Ao (t) + A ()X — X A11(t) — X A12(t) X 4+ appropriate ICs,
where All(t) c Rnnqxnnq’ AIZ(t) c Rnnqxnnp, A21 (t) € R™MPXnng gnd Azg(t) € Rnmpxnnp.
This package is based upon the well-known stiff/nonstiff solver LSODE of Hindmarsh.
The development of this High Performance Computing sequential version of DRESOL
involved basically two working lines:

e The intensive use of BLAS and LAPACK subroutines inside DRESOL subroutines.
Examples are scaling operations on vectors (SSCAL), matrix-matrix multiplication op-
erations (SGEMM), or reduction of a matrix to real Schur form (SGEES).

e The introduction of new block-oriented subroutines.

Efficiency and portability have been improved by using standard linear algebra libraries
(BLAS and LAPACK).

On the other hand, we have used the KINSOL package for the problem of hydraulic simu-
lation of water networks as a test case. As reported also in the previous newsletter, KINSOL
(Krylov Inexact Newton SOLwver) is a general purpose nonlinear system solver, callable from
either C or Fortran programs.

The work is still in a preliminary state, and currently we have succeeded in the simulation
of small networks (tens of nodes) without valves or pumps. For simulation of larger networks,
preconditioning of the underlying systems is necessary, which will be done in the following
months.

Vicente Hernandez, Enrique Arias and Fernando Alvarruiz
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7 SLICOT determines models for active noise control

7.1 Introduction

The active noise control problem considers the rejection of a noise signal (sound or vibration
noise) in a particular region by actively producing anti-noise. In active noise control, accurate
dynamical models of the paths along which the noise travels are of paramount importance.
In this note we show that subspace identification techniques can be used to obtain such
models. Subspace identification is a numerically robust noniterative method to estimate
multivariable state-space models from input and output data [1], [2]. SLICOT provides
efficient and numerical reliable implementations of different subspace identification methods
[3]. Below, we describe how the subspace identification tools from SLICOT can be used to
obtain models for active noise control. The application that we present is a laboratory set-up
consisting of a duct with two loudspeakers in which one loudspeaker radiates an undesirable
noise and the other loudspeaker has to be controlled to eliminate the noise as much as possible
at a certain location. First, we describe the laboratory set-up, then we discuss the use of the
SLICOT subspace identification software.

7.2 Description of the experimental setup

The system to be modeled is an acoustical duct, which is used for active noise control experi-
ments. Figure 2 presents a block scheme of the system. At the left end of a duct a loudspeaker
is mounted that produces undesired noise. The goal is to drive the secondary loudspeaker
mounted just before the other end of the duct such that at the far right end of the duct a
region of silence is created. Most control algorithms used in active noise control need a model
of the transfer from the secondary loudspeaker to the error microphone, called the secondary
path, and from the secondary loudspeaker to the detector microphone, called the acoustical
feedback. The transfer function of the secondary path is denoted by S(z) and the transfer
function of the acoustical feedback by F(z).

disturbance source 1l4em
300em -
Region of
12em| =R ))) y o
Silence
14cm | detector mic 140mi ~
' error
mic.

secondary loudsp.

AD /F\ LPF AD

(k) (k) u(k) [
disturbance S
source

e(k)

Figure 2: Schematic drawing of the acoustical duct experiment, with S the secondary path, F'
the acoustical feedback path, s the primary disturbance, d the detector signal, u the control
signal, and e the error signal.
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When the noise source is switched off, that is, there is no primary disturbance (s(k) = 0),

we can write
i ] =20 ] o

where ¢ is the shift operator, u(k) the input to the secondary loudspeaker, e(k) the signal
measured by the error microphone and d(k) the signal measured by the detector microphone.
A state-space description of this system can be written as

z(k+1) = Azx(k)+ Bu(k),
e(k) — Ce De
i | =[]0 [r e
with (k) € R™ the state and n the order of the system. The transfer function of the
secondary path and of the acoustical feedback path become S(z) = C,(2I — A)~'B + D, and
F(2) = C4(2I — A)~'B + Dy, respectively. The sampling frequency used for the experiment is

1 kHz. The low pass filters (LPF) in Figure 2 are first order anti-aliasing filters with a cutoff
frequency of 300 Hz.

7.3 Subspace identification of acoustic transfer functions using SLICOT
tools

Because of the physical distance between the loudspeaker and the microphones and the pres-
ence of the AD/DA converters, there is a pure delay in the secondary path and in the acoustical
feedback. These delays were determined before estimating the remaining dynamics for S(z)
and F(z) by subspace identification. The pure delay in S(z) was found to be 2 samples and
in F(z) to be 9 samples. The delays were removed from the corresponding signals, by shifting
the signals e(k) and d(k) in time.

To determine S(z) and F(z) (without the delay) the noise source was switched off (s(k) =
0) and u(k) was driven by a zero-mean white noise. For each of the signals u(k), e(k), and
d(k), two data sets of 4000 samples were collected. The first data set was used to estimate
a model of the system; the second data set was used to validate the estimated model. The
first data set is called the identification data set and the second data set the validation data
set. The MOESP subspace identification method was used to determine a state-space model
for the secondary path and the acoustical feedback. The calculations were performed on
a 366MHz Pentium II computer with 128Mb memory running Red Hat Linux version 6.2.
We used SLICOT release 4.0 [3] based on LAPACK Version 3.0 and the standard reference
implementation of BLAS. To show that the use of fast implementations provided by SLICOT
reduces the calculation time significantly, a comparison was made with the MATLAB MOESP
implementation contained in the SMI toolbox [4]. We used SMI toolbox version 1.0 and
MATLAB version 6.0.

Using the pre-processing routine order with 100 block rows, a data-compressed matrix
was calculated from which A and C can be calculated easily. The pre-processing routine also
returned 200 (that is, 100 block rows times 2 outputs) singular values. A large gap between
two subsequent singular values indicates the order of the system. Figure 3 shows the first 60
singular values. From the figure, we conclude that a good initial guess of the model order is
16. However, to obtain a better insight in the true model order, models with orders between
10 and 40 were calculated. For each order, the A and C' matrices were calculated using the

14
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Figure 3: The first 60 singular values returned by the SLICOT pre-processing routine order.

routine sident, and the B and D matrices were calculated using the routine findBD. The
quality of the obtained models is expressed by the Variance Accounted For (VAF), which is
defined as R
VAF = max {1 - w,o} x 100%,
var(yy)

where 75, denotes the output signal of the model, y; the measured output signal, and var(-)
denotes the variance of a quasi-stationary signal. Figure 4 shows the VAF values for models
of different orders on the identification and validation data sets.

Using Figure 4 we estimated the order of the system to be 28. The VAF values for the
two outputs on the identification data and the validation data are approximately the same,
and equal to 99.74% for the secondary path and 99.93% for the acoustical feedback..

Figure 5 contains the output spectra for both the secondary path and the acoustical
feedback based on the measured outputs from the validation data; it also contains the spectra
of the error between the measured outputs and the outputs of the model (using again the
validation data). This figure shows that below 50 Hz the measured outputs only consist of
measurement noise, which can be explained by realizing that the loudspeaker is not able to
generate sound waves below 50 Hz. It also shows that the anti-resonances in the secondary
path at 346 Hz, 408 Hz and 467 Hz are poorly identified. However, on the average the error
is about 2.5-3 decades lower than the measured output, which is accurate enough for most
active noise control applications.

SLICOT provides fast implementations of the pre-processing routine order. The calcula-
tion time of this routine is dominated by performing a QR factorization. To reduce calculation
time considerably, this factorization can be replaced by a Fast-QR. factorization or a Cholesky
factorization [5]. Table 3 shows the average calculation time of the pre-processing routine
order over 20 experiments using the QR, the Fast-QR, and the Cholesky factorization, and
of the MATLAB routine dordpo from the SMI toolbox. To provide insight into the accuracy of
the different implementations, Table 3 also presents the 2-norm of the distance between the
singular value vector computed by the SLICOT routine order using the default QR algorithm
and the singular value vector computed by the other implementations. The differences are
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Figure 4: VAF (%) values for different model orders of the output of the secondary path (left)
and of the acoustical feedback path (right).
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Figure 5: Spectra of the measured output of the secondary path (left) and of the acousti-
cal feedback path (right). The dotted lines represent the measured outputs; the solid lines
represent the errors between the measured outputs and the outputs of the model.
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Table 3: Average calculation time of the pre-processing routine with 100 block rows over 20
experiments and 2-norm of the distance of the singular value vector returned by order using
the QR algorithm.

SLICOT SLICOT SLICOT MATLAB
order (QR) | order (Fast-QR) | order (Cholesky) dordpo
Calculation time (sec.) 39.3 2.44 2.32 22.7
2-norm of the difference 0 1.54 .10 1.76 - 10~ 1.22-107%

in the singular values

Table 4: Average calculation times of A and C, and of B and D over 20 experiments using
SLICOT and MATLAB routines.

SLICOT MATLAB
sident/findBD ‘ dmodpo/dac2bd
Calculation time A, C: 0.5215 0.0182
Calculation time B, D: ‘ 1.4844 ‘ 3.6958

negligibly small. The differences between the VAF values obtained from a model estimated
by the SLICOT routines sident and findBD, and a model estimated by the MATLAB routines
dmodpo and dac2bd are also negligible.

From the results of Table 3 we conclude that using the Fast-QR and the Cholesky fac-
torization, the calculation time can be reduced significantly without introducing large com-
putational errors in the singular values. The fact that the SLICOT implementation based
on the QR factorization takes more calculation time than the MATLAB routine dordpo (also
based on a standard QR factorization routine) may be due to a suboptimal choice of the work
space in the SLICOT implementation by the user and/or the use of a nonoptimized BLAS
implementation.

Table 4 provides the average calculation times of A and C, and of B and D over 20
experiments using the SLICOT routines sident, findBD and using the MATLAB routines
dmodpo, dac2bd. We see that using SLICOT for the calculation of A and C takes more time
than using the MATLAB routine; this may be due to a relatively large overhead time in the
routine sident for allocating memory and performing several checks. However, we also see
that using the SLICOT routine the calculation time of B and D can be reduced significantly.
Since the calculation time for B and D is much larger than the calculation time for A and
C, the SLICOT routines are faster on the whole. Figure 6 illustrates this by comparing the
calculation time of B and D by different model orders for both the SLICOT and MATLAB
implementations.

7.4 Conclusions

We successfully used the SLICOT tools for subspace identification to estimate from experi-
mental data a model that can be used for active noise control of an acoustical duct. Accurate
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Figure 6: Time needed for the calculation of the matrices B and D for different choices of the

system order, using the SLICOT routine £indBD (x) and the MATLAB routine dac2bd (+).

estimates of the acoustical transfer functions of the secondary path and of the acoustical feed-
back path were obtained; the VAF values for the validation data were 99.7% and 99.9%. A
comparison was made among different implementations of the QR factorization used in sub-
space identification. The fast implementations in SLICOT can reduce the calculation time by
an order of magnitude compared with the standard MATLAB implementation. The difference

in accuracy of the models obtained by these different implementations is negligible.
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8 SLICOT: a useful tool in industry?

8.1 Using SLICOT in Controllabs Products
8.1.1 Introduction

Controllab Products BV (CLP) is a spin-off company of the Control Laboratory of the Uni-
versity of Twente. CLP is engaged with two things:

1. CLP is the creator and distributor of 20—simTM, a software package for modeling and
simulation of dynamic systems for Microsoft Windows.

2. Design: CLP designs on demand technical software and offers consultancy for control
engineering and mechatronics.

With 20-sim you can simulate the behavior of dynamic systems, such as electric, mechanical
and hydraulic systems or any combination of these systems. 20-sim has been developed at
the Control Laboratory of the University of Twente, as successor of the famous TUTSIM
package.

20-sim fully supports graphical modeling, allowing you to design and analyze dynamic
systems in an intuitive and user-friendly way, without compromising power. Some of the key
features of 20-sim are:

e rapid system modeling through iconic diagrams, block diagrams, bond graphs and equa-
tions

e fully observable, unlimited hierarchical model structure

e active support of top-down, inside-out and bottom-up modeling

e multiple libraries with a large set of domain oriented models

e inspect any library model and change it for your own use

e save models for reuse later

e add graphical elements (lines, arrows, rectangles, text) to your models

e advanced simulation algorithms with high simulation speeds

e advanced debugging facilities

e import and export of data to MATLAB, also during a simulation run
Two important tools in 20-sim are the Linear System Editor and the Controller Design Editor.
These tools use functionality of the SLICOT, LAPACK and BLAS libraries.
8.1.2 Linear System Editor

The Linear System Editor is a specialized tool for the design and analysis of linear systems.
The editor supports continuous-time and discrete-time SISO systems using various represen-
tations. Standardized plots enable you to quickly evaluate system behavior.
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Figure I: Linear System Editor in 20-s1n

A graphical interface allows you to edit a linear system in any desired form: State Space
(ABCD), Transfer Function or Zero Pole Gain. Designing a linear system is performed in-
teractively by editing the system and observing its behavior in time and frequency domain.
Input can originate from a 20-sim Linear System Model, 20-sim linearization output, the 20-
sim Filter Editor, clipboard, MATLAB workspace or from the user. Output can be generated
for a 20-sim linear system model, the 20-sim Filter Editor, clipboard and MATLAB workspace.

The linear models can either be numeric (numerical values as parameters) or symbolic
(variables and equations as parameters). Symbolic linear models are related to their (non-
linear) parent models because they share the same parameter space.

Some important features of the Linear System Editor are:

e Editing as ABCD State Space, Transfer Function or Zeros Poles Gain with automatic
transformation between these forms.

e Generate and edit continuous-time and discrete-time models.
e Handles numeric and symbolic models.

e Time and frequency plots: Step Response, Bode Plot, Nyquist Diagram, Nichols Chart
and Pole-Zero Plot.

Plot Options
e Multi-view: show various plots of same system.
e Multi-system: show one plot of various systems.
e Inspect numerical values.
e Zoom in / zoom out.
e Copy to Clipboard and Print.

System Parameters
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Phase Margin.

Gain Margin.

Rise Time.

Steady State Value.

Overshoot.

e Modulus Margin.

Linear System Representation Transformations

The transformation between the different linear system representations is performed using
the SLICOT and LAPACK routines.

From Transfer Function to ABCD system:

ABOSND 1] create a System Pencil: AB — A
TDO4AD  [3]

From ABCD system to Transfer Function:
TB04AD 2]

From ABCD to Zeros Poles Gain:

dgees [6] find the eigenvalues of the A, and the poles of the system
ABOSND 1] create a System Pencil: A\B — A
dgegv [7] find the zeros using the System Pencil.

From Zeros Poles Gain to Transfer Function:
No SLICOT routines are necessary to perform this task. Creating a polynomial of a given
set of zeros is straightforward. E.g., (s — z1)(s — z2) --- (s — 2,). Using these three functions

TD04AD ABOEWD

dgeay

TBRO4LTD

Transfer Function Lerns Poles Gain

Figure 2: transformation between linear system representations

makes it possible to inspect the linear system in any of the three possible representations. In
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order to create the frequency plots for the linear system the SLICOT routine TDO5AD [4] is
used.

Discrete-time < continuous-time systems conversion

In 20-sim it is possible to create a discrete-time system from a continuous-time system and
vice-versa with the following transformations:

e Euler
e Backward Difference
e Tustin ( bilinear transformation)

The Euler and Backward Difference methods are straightforward by applying the transfor-
mation functions:
z=sh+1,

for the Euler method and
z=1/(1 — sh),

for the Backward Difference method. For the Tustin transformation the SLICOT routine
AB0O4MD [5] is used.

8.1.3 Linearization

Any 20-sim model can be linearized to generate a linear continuous-time or discrete-time
state-space model. Linearization can be performed at any point of a simulation run. The
result is a linear model that is presented in the Linear System Editor. The linear models can
either be numeric (numerical values as parameters) or symbolic (variables and equations as
parameters). Symbolic linear models are related to their (non-linear) parent models because
they share the same parameter space.

8.1.4 Controller Design Editor

The Controller Design Editor is a specialized tool for the design of feedback control systems.
A feedback structure of subsystems is presented with a linear plant, controller, measurement
and prefilter. All the subsystems can be edited and inspected in much the same way as in
the Linear System Editor. Also the open-loop and closed-loop systems and the sensitivities
are available.
Immediate Results
Changes in one of the subsystems directly update all open plots and dialogs. Adapting for
instance the controller gain, immediately changes poles and zeros of the closed-loop system
and the overall step response. The integration within 20-sim and linear system exchange with
MATLAB makes this editor a powerful tool for designing feedback control systems.

Some important additional features of the controller design editor are:

e Additional ports allow the connection of disturbances and feedforward signals to your
controlled system.

e Template models make it easy to reuse your design (e.g., to replace the linear plant
with a non-linear iconic-diagram implementation).
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Figure 3: Controller Design Editor

8.1.5 Conclusions and Future Work

We think that 20-sim is a powerful tool which enables the user to create models of physical
systems possibly in combination with a controller to obtain better system behavior. Models
can be linearized which result in a Linear System Model which can be inspected and edited in
the Linear System Editor or Controller Design Editor. In these editors some SLICOT routines
are used which make it a powerful and user-friendly tool and an important enhancement of
20-sim.

We are planning to extent the Controller Design Editor with automatic controller design.
For this purpose the SLICOT library for Identification and Control can be used.

Although the SLICOT library functions are stable and fast, implementing them in a C or
C++ environment like 20-sim is not straightforward. We used the utility f2¢ to convert the
Fortran files of SLICOT, LAPACK and BLAS to C. In this way it is almost impossible to use
more than just a small subset of files necessary for a particular problem. Also the interface
of the library routines is sometimes difficult, for example some of the functions take no less
than 29 arguments (ABOSND).

Contact

A fully working viewer version of 20-sim can be downloaded from the 20-sim web-site:
www.20sim.com. Also on this web-site more information can be found how to contact Con-
trollab Products BV.

References

Library Routines used

SLICOT
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[11 ABOSND
[2] TBO04AD
[31 TDO04AD
[41 TDO5AD
[56]1 AB04MD
LAPACK

[6] dgees

[7] dgegv

System zeros and Kronecker structure of system pencil

Transfer matrix of a state-space representation

Minimal state-space representation for a proper transfer matrix
Evaluation of a transfer function for a specified frequency
Discrete-time <+ continuous-time conversion by bilinear transformation

computes for an n X n real nonsymmetric matrix A, the eigenvalues,
the real Schur form 7', and, optionally, the matrix of Schur vectors Z.
computes for a pair of n X n real nonsymmetric matrices A and B, the
generalized eigenvalues, and optionally, the left and/or right generalized
eigenvectors.

Frank N.J. Groen, Controllab Products B.V.
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9 Highlights of the SLICOT training course in Bremen, Ger-
many

The workshop and training course

ADVANCED COMPUTATIONAL TOOLS FOR COMPUTER-AIDED CONTROL
SYSTEMS DESIGN

took place September 27-29, 2001, at University of Bremen, Germany

This workshop and training course was intended as a tutorial on the use of the freeware
Subroutine Library in Systems and Control Theory (SLICOT) for solving practical control
engineering problems within computer-aided control systems design (CACSD) environments.
The exercises solved by the participants during the hands-on training sessions demonstrated
that SLICOT-based software usually has improved reliability and efficiency as well as extended
functionality compared to the computational methods implemented in other CACSD software
packages.

The workshop was organized by Angelika Bunse-Gerstner and Peter Benner from the Zen-
trum fiir Technomathematik/AG Numerik of the University of Bremen, Germany, in coopera-
tion with the Numerics in Control Network (NICONET) funded by the European Community
BRITE-EURAM III Thematic Networks Programme.

The workshop was attended by 39 participants from Belgium, Bulgaria, France, Germany,
Great Britain, The Netherlands, Romania, Spain, Sweden, and Switzerland. The workshop
provided a stimulating atmosphere for discussions on how to use SLICOT-based software in
industrial applications. Some posters during the poster session on Thursday, September 27,
showed the performance of the SLICOT software for use in MATLAB and scilab applied to
real-world problems.

Major topics of the course were

e basic control software

e system identification

e model reduction

e robust control design using H-infinity techniques
The program of the workshop was as follows:

Thursday, September 27, 2001

09.00-09.15 S. Van Huffel, A. Bunse-Gerstner: Welcome addresses

09.15-09.45 S. Van Huffel: Introduction to NICONET and SLICOT

09.45-10.30 S. Hammarling: The backbone of reliable numerical software: BLAS and LAPACK
10.30-11.00 Coffee break

11.00-12.00 H. Stahl: The MATLAB Control Toolbox

12.00-13.30 Lunch

13.30-14.15 P. Van Dooren, P. Benner: Basic control software

15.00-16.00 Coffee & Posters

16.00-19.00 V. Sima: Training Part I
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Friday, September 28, 2001

09.00-10.30 V. Verdult: System identification with SLICOT
10.30-11.00 Coffee break

11.00-12.30 A. Varga: SLICOT model reduction tools
12.30-14.00 Lunch

14.00-15.00 J. de Cuyper: Applications of SLICOT in industry
15.00-15.30 Coffee break

15.30-18.30 V. Sima: Training II

19:30-23:00 Banquet

Saturday, September 29, 2001

09.00-10.30 P. Petkov, D.-W. Gu: Robust control design using SLICOT
10.30-11.00 Coffee break

11.00-13.00 V. Sima: Training III

13.00-14.00 Lunch

During the poster session participants presented their own projects and discussed current
problems or open questions. The following posters were presented:

Peter Benner, Enrique Quintana-Orti, Gregorio Quintana-Orti: Model reduction of
large-scale dense systems

Younés Chahlaoui, Antoine Vandendorpe, Paul Van Dooren: Model reduction of large-
scale dynamical systems via Multipoint Padé

Francois Delebecque, Serge Steer: scilab-SLICOT

Erik Elmroth, Pedher Johansson, Bo Kagstrom, Daniel Kressner, Volker Mehrmann:
SLICOT Web Computing

Heike Falbender, Peter Benner: SLICOT drives tractors!

Sven Hammarling: LAPACK and ScaLAPACK: The underlying linear algebra for SLI-
coT

Ines Ferrer-Mallorqui: Interval-based tools for robust control
Ivan Markovsky, Sabine Van Huffel: Element-Wise Weighted Total Least Squares

Ivan Markovsky, Sabine Van Huffel, Bart De Moor: Multi-Model System Parameter
Estimation

Horst Schulte: Motion control for servo-pneumatic actuators using Takagi-Sugeno fuzzy
models

Diana Maria Sima, Vasile Sima, Sabine Van Huffel: Recent Developments in SLICOT
Library for System Identification

For further information on the workshop see

http://www.math.uni-bremen.de/zetem/workshops/cacsd

Peter Benner
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10 NICONET information corner

This section informs the reader on how to access the SLICOT library, the main product of the
NICONET project, and how to retrieve its routines and documentation. Recent updates of
the library are also described. In addition, information is provided on the newest NICONET
reports, available via the NICONET website or ftp site, as well as information about upcoming
workshops/conferences organized by NICONET or with a strong NICONET representation.

Additional information about the NICONET Thematic Network can be found from the
NICONET homepage World Wide Web URL

http://www.win.tue.nl/wgs/niconet.html

10.1 Electronic Access to the Library
The SLICOT routines can be downloaded from the WGS ftp site,

ftp://wgs.esat.kuleuven.ac.be

(directory pub/WGS/SLICOT/ and its subdirectories) in compressed (gzipped) tar files. On
line .html documentation files are also provided there. It is possible to browse through the
documentation on the WGS homepage at the World Wide Web URL

http://www.win.tue.nl/wgs/

after linking from there to the SLICOT web page and clicking on the FTP site link in the
freeware SLICOT section. The SLICOT index is operational there. Each functional “module”
can be copied to the user’s current directory, by clicking on an appropriate location in the
.html image. A “module” is a compressed (gzipped) tar file, which includes the following
files: source code for the main routine and its example program, example data, execution
results, the associated .html file, as well as the source code for the called SLICOT routines.

The entire library is contained in a file, called slicot.tar.gz, in the SLICOT root di-
rectory /pub/WGS/SLICOT/. The following Unix commands should be used for decompressing
this file:

gzip -d slicot.tar
tar xvf slicot.tar

The created subdirectories and their contents is summarized below:

slicot contains the files 1ibindex.html, make.inc, makefile, and the
following subdirectories:
benchmark_data contains benchmark data files for Fortran benchmark routines

(.dat);

doc contains SLICOT documentation files for routines (.html);

examples contains SLICOT example programs, data, and results (.f, .dat,
.res), and makefile, for compiling, linking and executing these
programs;

src contains SLICOT source files for routines (.f), and makefile, for
compiling all routines and creating an object library;

SLTools contains MATLAB.m files and data .mat files;

SLmex contains Fortran source codes for mexfiles (.f).
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Another, similarly organized file, called slicotPC.zip, is available in the SLICOT root
directory; it contains the MS-DOS version of the source codes of the SLICOT Library, and
can be used on Windows 9x/2000 or NT platforms. Included are several source makefiles.

After downloading and decompressing the appropriate SLICOT archive, the user can
then browse through the documentation on his local machine, starting from the index file
libindex.html from slicot subdirectory.

10.2 SLICOT Library updates in the period July 2001—December 2001

There have been one major SLICOT Library update during the period July 2001—December 2001:
on October 3. Details are given in the files Release.Notes and Release.History, located
in the directory pub/WGS/SLICOT/ of the ftp site.

Few changes have been made in the routines ABO9IY, IBO1PD, IBO1BD, IBO1PD, IBO1PX,
IBO1PY, SB16AD, and SB16BD, for removing some bugs. Also, five m/mexfiles (slinorm.m,
aresol.f, aresolc.f, findBD.f, and find models.m) have been updated. Details are given
in the file Release.Notes.

A new routine, and associated mexfile and example program, have been added to compute
the matrices of a positive feedback controller in the Discrete-Time Loop Shaping Design
Procedure.

In addition, the file plicmr.tar.gz has been added to the SLICOT root directory. It contains
3 model reduction routines, 7 associated routines (solvers for coupled stable Lyapunov/Stein
equations, stable Sylvester equations, etc.), and 12 lower-level routines, all for parallel com-
puters. Details are given in the incorporated .html documentation, accessible from the file
index.html, included in the archive.

Over 20 new user-callable and computational routines for basic control problems, and iden-
tification of Wiener systems, have been implemented and will be posted soon on the SLICOT
ftp site. They include Identification Routines, Mathematical Routines, and Transformation
Routines, performing the following main computational tasks:

e compute a set of parameters for approximating a Wiener system in a least-squares sense,
using a neural network approach and a Levenberg-Marquardt algorithm.

e solve a system of linear equations Ax = b, with A symmetric, positive definite, or, in
the implicit form, f(A,z) = b, where y = f(A, ) is a symmetric positive definite linear
mapping from z to y, using the conjugate gradient algorithm without preconditioning.

e solve a set of systems of linear equations, AT AX = B, or, in the implicit form, f(A)X =
B, with AT A or f(A) positive definite, using symmetric Gaussian elimination.

e solve a system of linear equations Az = b, Dz = 0, in the least squares sense, with D a
diagonal matrix, given a QR factorization with column pivoting of A.

e find the parameters 6 for a function F(z,0) that give the best approximation for
y = F(z,0) in a least-squares sense using a Levenberg-Marquardt algorithm based
on conjugate gradients for solving linear systems.

e find the parameters 6 for a function F(z,#) that give the best approximation for y =
F(z,0) in a least-squares sense using a Levenberg-Marquardt algorithm based on QR
factorization with column pivoting.
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compute the QR factorization with column pivoting of an m x n matrix J (m > n),
that is, JP = QR, where @) is a matrix with orthogonal columns, P a permutation
matrix, and R an upper trapezoidal matrix with diagonal elements of nonincreasing
magnitude, and apply the transformation Q7 on the error vector e; the 1-norm of the
scaled gradient is also returned.

find a value for the parameter A such that if z solves the system Az = b, \/2Dz = 0,
in the least squares sense, where A is an m X n matrix, D is an n X n nonsingular
diagonal matrix, and b is an m-vector, and if § is a positive number, then either A = 0
and (||Dz||2 — ) < 0.16, or A > 0 and |||Dz||2 — | < 0.15. It is assumed that a QR
factorization with column pivoting of A is available, that is, AP = QQR, where P is a
permutation matrix, () has orthogonal columns, and R is an upper triangular matrix
with diagonal elements of nonincreasing magnitude.

compute the output of a Wiener system.
compute the output of a set of neural networks.
compute the Jacobian of a Wiener system.

find a value for the parameter X such that if 2 solves the system Jz = b, \Y/2Dz = 0,
in the least squares sense, where J is an m X n matrix, D is an n X n nonsingular
diagonal matrix, and b is an m-vector, and if § is a positive number, then either A = 0
and (||Dz||2 — ) < 0.16, or A > 0 and |||Dz||2 — §| < 0.15. It is assumed that a QR
factorization with block column pivoting of J is available, that is, JP = QR, where P is
a permutation matrix, () has orthogonal columns, and R is an upper triangular matrix
with diagonal elements of nonincreasing magnitude for each block.

solve a system of linear equations Jx = b, Dz = 0, in the least squares sense, with D a
diagonal matrix, given a QR factorization with block column pivoting of J.

solve one of the systems of linear equations Rz = b, or R"z = b, in the least squares
sense, where R is an n X n block upper triangular matrix, with the structure

R, 0 - 0] I
0 Ry -+ 0 | L
0 0 - Ry| I
0 0 -+ 0 | Ry

with the upper triangular submatrices R, k = 1: £ 4+ 1, square, and the first £ of the
same order. The diagonal elements of each block Rj; have nonincreasing magnitude.
The matrix R is stored in a compressed form.

compute the QR factorization with block column pivoting of an m xn matrix J (m > n),
that is, JP = QR, where @) is a matrix with orthogonal columns, P a permutation
matrix, and R an upper trapezoidal matrix with diagonal elements of nonincreasing
magnitude for each block, and apply the transformation Q7 on the error vector e; the
1-norm of the scaled gradient is also returned.
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e compute the matrix J”J + cI, for the Jacobian J given in a compressed form.
e compute the matrix JTJ + ¢I, for the Jacobian J fully given, for one output variable.

e compute the matrix-vector product z < (J.J 4 cI)z, where .J is given in a compressed
form.

e compute z < (AT A + cI)z, where A is an m x n real matrix, and c is a scalar.

e compute the Jacobian of the error function for a neural network (for one output vari-
able).

e convert the linear discrete-time system given as (A, B, C, D), with initial state zg, into
the output normal form, with parameter vector #. The matrix A is assumed to be
stable. The matrices A, B,C, D and the vector x( are transformed, so that on exit they
correspond to the system defined by 6.

e convert the linear discrete-time system given as its output normal form, with parameter
vector 6, into the state-space representation (A, B, C, D), with the initial state x.

e compute the output sequence of a linear time-invariant open-loop system given by its
discrete-time state-space model (A, B, C, D), where A is an n X n general matrix (the in-
put and output trajectories are stored differently from SLICOT Library routine TFO1MD).

10.3 New NICONET Reports

Recent NICONET reports (available after June 2001), that can be downloaded as compressed
postscript files from the World Wide Web URL

http://www.win.tue.nl/wgs/reports.html
or from the WGS ftp site,
ftp://wgs.esat.kuleuven.ac.be
(directory pub/WGS/REPORTS/), are the following;:

e Isak Jonsson and Bo Kagstrom. Recursive Blocked Algorithms for Solving Triangu-
lar Matriz Equations—Part I: One-Sided and Coupled Sylvester-Type Equations (file
SLWN2001-4.ps.Z, revised August 2001).

Triangular matrix equations appear naturally in estimating the condition numbers of
matrix equations and different eigenspace computations, including block-diagonalization
of matrices and matrix pairs and computation of functions of matrices. To solve a trian-
gular matrix equation is also a major step in the classical Bartels-Stewart method. We
present recursive blocked algorithms for solving one-sided triangular matrix equations,
including the continuous-time Sylvester and Lyapunov equations, and a generalized cou-
pled Sylvester equation. The main parts of the computations are performed as level 3
general matrix multiply and add (GEMM) operations. Recursion leads to an automatic
variable blocking that has the potential of matching the memory hierarchies of today’s
HPC systems. Different implementation issues are discussed, including when to end
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the recursion, the design of optimized superscalar kernels for solving leaf-node triangu-
lar matrix equations efficiently, and how parallelism is utilized in our implementations.
Uniprocessor and SMP parallel performance results of our recursive blocked algorithms
and corresponding routines in the state-of-the-art libraries LAPACK and SLICOT are
presented. The performance improvements of our recursive algorithms are remarkable,
including 10-folded speedups compared to standard algorithms.

Isak Jonsson and Bo Kagstrom. Recursive Blocked Algorithms for Solving Triangular
Matriz Equations—Part II: Two-sided and Generalized Sylvester and Lyapunov Equa-
tions (file SLWN2001-5.ps.Z, September 2001).

We continue our study on high-performance algorithms for solving triangular matrix
equations. They appear naturally in different condition estimation problems for ma-
trix equations and various eigenspace computations, and as reduced systems in stan-
dard algorithms. Building on our successful recursive approach applied to one-sided
matrix equations (Part I), we now present recursive blocked algorithms for two-sided
matrix equations, which include matrix product terms such as AXB”. Examples are
the discrete-time standard and generalized Sylvester and Lyapunov equations. The
means for high-performance are the recursive variable blocking, which has the potential
of matching the memory hierarchies of today’s high-performance computing systems,
and level 3 computations which mainly are performed as GEMM operations. Different
implementation issues are discussed, focusing on similarities and differences between
one-sided and two-sided matrix equations. We present uniprocessor and SMP parallel
performance results of recursive blocked algorithms and routines in the state-of-the-
art SLICOT library. The performance improvements of our recursive algorithms are
remarkable, including 10-folded speedups or more, compared to standard algorithms.

Chris Denruyter. Solving Sylvester equations for Model Reduction: SLICOT vs. MATLAB
(file SLWN2001-6.ps.Z, October 2001).

In this report, we compare two Sylvester equation solvers: the MATLAB function lyap
and the SLICOT function slsylv. An algorithm designed for model reduction and based
on the resolution of a Sylvester equation is presented. In this context, timing results
show the superiority of the SLICOT based m.file slsylv.

P.Hr. Petkov, D.W. Gu and MM. Konstantinov. Robust control of a disk drive servo
system (file SLWN2001-7.ps.Z, December 2001).

In this expository paper we show the application of some of the SLICOT routines in the
robust control analysis and design of a disk drive servo system. An uncertainty model of
the system plant is first derived which contains eleven uncertain parameters including
four resonance frequencies, four damping coefficients and three rigid body model param-
eters. Three controllers for the uncertain system are designed using, respectively, the
techniques of Hy, mixed sensitivity design, H, loop shaping design procedure (LSDP)
and p-synthesis method. With these controllers the closed-loop system achieves robust
stability and in the cases of Hy and pu-controllers the closed loop system practically
achieves robust performance. A detailed comparison of the frequency domain and time
domain characteristics of the closed-loop system with the three controllers is conducted.
Further, model reduction routines have been applied to find a reasonably low order con-
troller based on the p-synthesis design. This reduced order controller maintains the
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robust stability and robust performance of the closed-loop system. Simulations of the
nonlinear sampled-data servo system with the low order controller have been included
as well, which confirms the practical applicability of the controller obtained.

Peter Benner, Enrique S. Quintana-Orti, Gregorio Quintana-Orti, and Rafael Mayo.
Enhanced Services for Remote Model Reduction of Large-Scale Dense Linear Systems
(file SLWN2002-1.ps.Z, January 2002).

This paper describes enhanced services for remote model reduction of large-scale, dense
linear time-invariant systems. Specifically, we describe a mail service and a web service
for model reduction on a cluster of Intel Pentium-IT architectures using absolute and
relative error methods. Experimental results show the appeal and accessibility provided
by these services.

Previous NICONET/WGS reports are also posted at the same address.

10.4 Forthcoming Conferences

Forthcoming Conferences related to the NICONET areas of interest, where NICONET part-
ners submitted proposals for NICONET /SLICOT-related talks and papers, and disseminated
or will disseminate information and promote SLICOT, include the following;:

CGH0-GGT70 meeting, a conference commemorating 50 years of conjugate gradients and
celebrating Gene Golub’s 70th birthday, ETH Zurich, February 18-20, 2002.

GAMM Annual meeting, Augsburg, Germany, March 25-28, 2002.
IFAC symposium on parameter estimation, Barcelona, Spain, March 2002.

15th Householder symposium on Numerical Linear Algebra, Peebles Hotel Hydro, Scot-
land, June 17-21, 2002.

MTNS, “Mathematical Theory of networks and Systems” meeting 2002, University of
Notre Dame, South Bend, Indiana, USA, August 12-16, 2002, see
http://www.nd.edu/ mtns/

Joint “IEEE Conference on Control Applications” and “IEEE Conference on Computer
Aided Control Systems Design”, September 17-20, 2002, Scottish Exhibition & Confer-
ence Centre, Glasgow, Scotland.

Vasile Sima
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